Towards an advanced wave extraction algorithm in numerical relativity

Andrea Nerozzi

The Era of Gravitational-Wave Astronomy, Paris

$$
\text { June 26th, } 2017
$$

Current problems with wave extraction in NR

- Extraction (in most cases) takes place at finite radius rather than null infinity
- Gauge ambiguity in the determination of the correct tetrad to project the Weyl tensor components.
- Numerical integration of the Weyl scalar Ψ_{4} to obtain the strain

Systematic errors coming from wave extraction are starting to become the dominant source of errors. The need of a mathematically rigorous wave extraction technique is becoming an urgent topic in numerical relativity.

Wave extraction with the Newman-Penrose formalism

The Newman-Penrose formalism is used in numerical relativity to obtain gauge invariant information about gravitational waves.

$$
\Psi_{4}=\frac{\partial^{2} h_{+}^{T T}}{\partial t^{2}}+i \frac{\partial^{2} h_{\times}^{T T}}{\partial t^{2}}
$$

The Kinnersley tetrad guarantees that $\Psi_{4}=0$ for Kerr.

- The chosen tetrad must converge to the Kinnersley tetrad in the background limit.
- Calculating Ψ_{4} using tetrads evaluated numerically normally brings unwanted gauge effects into the final waveform.
- Our objective is to eliminate the numerical evaluation of the tetrad (no more Gram-Schmidt!).

Relevant tetrads in the NP formalism for a general (Petrov type I) space-time

1) Symmetric transverse tetrad (STT)

$$
\Psi_{1}=\Psi_{3}=0 \quad \Psi_{0}=\Psi_{4}
$$

2) Quasi-Kinnersley tetrad (QKT)

$$
\Psi_{1}=\Psi_{3}=0 \quad \epsilon=0
$$

- QKT is the "right tetrad", it guarantees the convergence the Kinnersley tetrad in the Petrov type D limit.
- STT in a convenient tetrad because of its symmetric properties, but not good for numerical applications.
- STT and QKT are related by a spin/boost (type III) tetrad transformation (complex parameter \mathcal{B}).

The transformation STT \rightarrow QKT

The spin coefficient ϵ is fundamental

$$
\epsilon^{Q K T}=\frac{1}{|\mathcal{B}|}\left(\epsilon^{S T T}-\frac{1}{2} \ell^{a} \nabla_{a} \ln \mathcal{B}\right)
$$

Imposing $\epsilon^{Q K T}=0$ gives the condition for the spin-boost parameter \mathcal{B}

$$
\ell^{a} \nabla_{a} \ln \mathcal{B}=2 \epsilon^{S T T}
$$

The derivative of \mathcal{B} along the other null vectors can be obtained from the spin coefficients γ, α and β.

In order to calculate \mathcal{B} we need to know $\epsilon^{S T T}, \gamma^{S T T}, \alpha^{S T T}, \beta^{S T T}$.

Different approaches to Einstein's equations in vacuum

Coord. approach
$g_{\mu \nu}$
$\Gamma_{a b c}$
$C_{a b c d}$

NP in STT

$$
\begin{array}{r}
\Sigma_{\mu \nu}, \Sigma_{\mu \nu}^{+}, \Sigma_{\mu \nu}^{-} \\
A_{\mu}, B_{\mu}, C_{\mu} \\
\Psi_{2}, \Psi_{4}
\end{array}
$$

- In STT the only remaining degrees of freedom are Ψ_{2} and Ψ_{4}

$$
\begin{aligned}
& \Psi_{2}^{S T T}=-\frac{l^{\frac{1}{2}}}{2 \sqrt{3}}\left(\Theta+\Theta^{-1}\right) \\
& \Psi_{4}^{S T T}=\frac{l^{\frac{1}{2}}}{2 i}\left(\Theta-\Theta^{-1}\right)
\end{aligned}
$$

- I is one of the two curvature invariants and $\Theta=f(I, J)$.

Numerical implementation

The calculation of curvature invariants in numerical codes is very simple

$$
W_{a b}=E_{a b}+i B_{a b}=-{ }^{(3)} R_{a b}+K_{a}^{c} K_{c b}-K K_{a b}-i \epsilon_{a}^{c d} D_{c} K_{d b}
$$

and then I and J are simply given by

$$
\begin{aligned}
I & =\frac{1}{2} W_{a b} W^{a b}, \\
J & =\frac{1}{6} W_{a c} W^{c}{ }_{b} W^{a b}
\end{aligned}
$$

while Θ is given by $(\Theta \rightarrow 1$ for Kerr)

$$
\Theta=\sqrt{\frac{3}{l}}\left[-J+\sqrt{J^{2}-(I / 3)^{3}}\right]^{\frac{1}{3}}
$$

The Bianchi identities

The Bianchi identities $\left(\nabla_{a} C^{* a}{ }_{b c d}=0\right)$ written as functions of the variables introduced within our approach give

$$
\begin{aligned}
& A_{a}=-\frac{i K}{\sqrt{3}} B_{a}-\frac{1}{6} \nabla_{a} \ln I-\frac{K}{3} \nabla_{a} \ln \Theta \\
& C_{a}=-\frac{i\left(K+3 K^{-1}\right)}{2 \sqrt{3}} B_{a}+\frac{1}{6} \nabla_{a} \ln I+\left(\frac{3 K^{-1}-K}{6}\right) \nabla_{a} \ln \Theta .
\end{aligned}
$$

where

$$
K=\frac{\Theta-\Theta^{-1}}{\Theta+\Theta^{-1}}
$$

It turns out that the Bianchi identities can be used as simple relations to derive the two vectors A_{a} and C_{a} once B_{a} is known. But what about the third vector? Can we find a third potential?

A quadratic function of the Weyl tensor

We introduce following function of the self-dual Weyl tensor

$$
D_{a b c d}^{*}=\nabla_{\mu} \nabla^{\mu} C_{a b c d}^{*} .
$$

Using the Bianchi identities it is possible to show that $D_{\text {abcd }}^{*}$ is given by

$$
D_{a b c d}^{*}=16 / I_{a b c d}-\frac{3}{2} C_{a b e f}^{*} C^{* e f}{ }_{c d},
$$

where $I_{a b c d}$ is the identity tensor: $I_{a b c d}=\frac{1}{4}\left(g_{a c} g_{b d}-g_{a d} g_{b c}+i \epsilon_{a b c d}\right)$.
The tensor $D_{a b c d}^{*}$ has the same symmetries of the self-dual Weyl tensor, included its trace-free property.

On the divergence of $D_{a b c d}^{*}$

Analogously to $\nabla_{a} C^{* a}{ }_{b c d}=0$, the divergence of $D_{a b c d}^{*}$ must satisfy

$$
\nabla_{a} D^{* a}{ }_{b c d}=\mathcal{S}_{a} C^{* a}{ }_{b c d}+\mathcal{T}_{a} D^{* a}{ }_{b c d}
$$

\mathcal{T}_{a} and \mathcal{S}_{a} are tetrad invariant vectors given by

$$
\begin{gathered}
\mathcal{T}_{a}=\nabla_{a} \ln \left[I^{\frac{1}{2}}\left(\Theta^{3}+\Theta^{-3}\right)^{\frac{1}{3}}\right]-\frac{I^{-\frac{1}{2}}}{\sqrt{3}\left(\Theta^{3}+\Theta^{-3}\right)} \mathcal{S}_{a} \\
\mathcal{S}_{a}=f\left(\nabla_{a} I, \nabla_{a} \Theta\right)+D_{a}^{* b c d} \nabla_{e} D^{* e}{ }_{b c d}
\end{gathered}
$$

These two vectors naturally introduce a third tetrad invariant quantity that cannot be expressed as a function of I and J. Gradient of a third scalar?

Solution for A_{a}, B_{a} and C_{a}

Considering the Bianchi identities and the divergence of $D_{a b c d}^{*}$ one obtains

$$
\begin{aligned}
A_{a} & =\frac{\mathcal{E}_{A}}{12}\left[\tilde{S}_{a}+\nabla_{a} \ln \left(\frac{K}{\mathcal{E}_{A}}\right)\right]-\frac{1}{6} \nabla_{a} \ln I \\
B_{a} & =\frac{i \mathcal{E}_{B}}{4 \sqrt{3}}\left[\tilde{S}_{a}+\nabla_{a} \ln \left(\frac{K}{\mathcal{E}_{B}}\right)\right] \\
C_{a} & =\frac{\mathcal{E}_{C}}{6}\left[\tilde{S}_{a}+\nabla_{a} \ln \left(\frac{K}{\mathcal{E}_{C}}\right)\right]+\frac{1}{6} \nabla_{a} \ln I .
\end{aligned}
$$

where $\mathcal{E}_{A}=\left(\Theta-\Theta^{-1}\right)^{2}, \mathcal{E}_{B}=\Theta^{2}-\Theta^{-2}$ and $\mathcal{E}_{C}=\Theta^{2}+\Theta^{-2}+1$.

$$
K=\frac{\Theta^{3}-\Theta^{-3}}{\left(\Theta^{3}+\Theta^{-3}\right)^{\frac{1}{3}}}
$$

The Petrov type D limit

In the limit of Petrov type D the three vectors tend to

$$
\begin{array}{rlrl}
A_{a} & =\frac{1}{6} \nabla_{a} \ln I, & & \\
B_{a} & =0, \mu, \tau, \pi \\
C_{a} & =-\frac{1}{6} \nabla_{a} \ln I-\frac{I^{-\frac{1}{2}}}{6 \sqrt{3}} \mathcal{S}_{a} . & & \lambda, \sigma, \nu, \kappa \\
& & \epsilon, \beta, \alpha
\end{array}
$$

- These values are consistent with the known expressions for the spin coefficients in Kerr.
- The value of C_{a} calculated in the Kerr space-time confirms that $\mathcal{S}_{a}=\nabla_{a} \Phi!$ (at least in this limit)
- Knowing C_{a} in STT and in QKT allows to calculate the spin/boost parameter \mathcal{B} between STT and QKT.

Final expressions

Knowing the spin-boost parameter \mathcal{B} between STT and QKT we find that the values of Ψ_{2} and Ψ_{4} in QKT are given by

$$
\begin{aligned}
\Psi_{2}^{Q K T} & =-\frac{l^{\frac{1}{2}}}{2 \sqrt{3}}\left(\Theta+\Theta^{-1}\right) \\
\Psi_{4}^{Q K T} & =\frac{\mathcal{B}^{2} I^{\frac{1}{2}}}{2 i}\left(\Theta-\Theta^{-1}\right)
\end{aligned}
$$

Moreover: the spin coefficient σ in QKT vanishes in the Kerr limit and is naturally related to

$$
\sigma^{Q K T}=\frac{\partial h_{+}^{T T}}{\partial t}+i \frac{\partial h_{\times}^{T T}}{\partial t} .
$$

No need for numerical integration!

The Ricci identities

It is known that the Ricci identities in STT simplify to

$$
\begin{aligned}
& \nabla_{a} A^{a}=A_{a} A^{a}-B_{a} B^{a}-\frac{2 l^{\frac{1}{2}}}{\sqrt{3}}\left(\Theta+\Theta^{-1}\right) \\
& \nabla_{a} B^{a}=-2 B_{a} C^{a}+2 i \Psi_{-} \\
& \nabla_{a} C^{a}=A_{a} A^{a}-B_{a} B^{a}+2 A_{a} C^{a}-\frac{4 l^{\frac{1}{2}}}{\sqrt{3}}\left(\Theta+\Theta^{-1}\right)
\end{aligned}
$$

Our result of obtaining A_{a}, B_{a} and C_{a} as functions of $\nabla_{a} l, \nabla_{a} \Theta$ and maybe $\nabla_{a} \Phi$ would then lead to equations of the type

$$
\begin{aligned}
\nabla_{a} \nabla^{a} I & =\ldots \\
\nabla_{a} \nabla^{a} \Theta & =\ldots \\
\nabla_{a} \nabla^{a} \Phi & =\ldots
\end{aligned}
$$

A set of three non-linear wave-like equations for I, Θ and Φ.

Conclusions

- Transverse tetrads $\left(\Psi_{1}=\Psi_{3}=0\right)$ are an elegant form of fixing the gauge in the Newman-Penrose formalism for wave extraction.
- Using STT as a starting point, we only need to calculate the spin-boost parameter \mathcal{B} to obtain the scalars in QKT.
- Bianchi identities and the divergence of $D_{a b c d}^{*}$ allow to find the expression for the spin coefficients in STT, and consequently \mathcal{B}.
- Work in progress to determine whether the additional degree of freedom (\mathcal{S}_{a}) can in general be expressed as gradient of a third potential (it can in the Petrov type D limit).
- This procedure allows to study alternative quantities to ψ_{4}, like σ, related to the first time derivative of the strain.

