Modelling EMRIs using Self-Force

Maarten van de Meent

Albert Einstein Institute, Golm

The Era of Gravitational-Wave Astronomy XXXIIIth international Colloquium of the IAP, Paris, 28 June 2017

Modelling EMRIs using Self-Force

Introduction: the challenge of modelling EMRI evolution

EMRIs: Extreme Mass Ratio Inspirals

Extreme mass ratio inpiral (EMRI)

binary BH with $\mu=M_2/M_1\ll 1$

Typical (LISA) source [Babak et al., 2017]		
$M_1 \sim 10^{5-6} M_{\odot}$	$M_2 \sim 10 - 30 M_{\odot}$	
$a_1 \sim 0.98 M_{\odot}$	$z \sim 2 - 3$	
$e \sim 0 - 0.2$	generic inclination	

Event rate [Babak et al., 2017]

 $\begin{array}{l} {\rm Expect} \sim 1 \mbox{ per MYr per galaxy.} \\ 1-5000 \mbox{ detectable LISA events per year.} \end{array}$

High precision measurements		
	Quantity	accuracy
	M_1, M_2, a_1, e, ι	10^{-5}
	quadrupole	10^{-3}
	position	$\sim 2~{ m sq.}~{ m deg.}$
	distance	3%
		[Babak et al., 201]

Maarten van de Meent

Modelling BH binaries

Modelling BH binaries

8

Modelling BH binaries

The "Capra" programme

20th Capra meeting (2017) participants

< ロ > < 回 > < 回 > < 回 > <</p>

Goals

- model EMRI evolution accurate to $\lesssim .1$ radian over $\sim 10^5$ orbits.
- include general eccentricities
- include general inclination
- include effects of spin on primary object
- include effects of spin on secondary object

"Elk nadeel hep z'n voordeel."

Strategy

Use the smallness of the mass-ratio $\mu:=\frac{M_2}{M_1}$ to our advantage and use it as an expansion parameter using:

- Black hole perturbation theory
- Multi length scale analysis (matched asymptotics)
- Multi time scale analysis

Theory: perturbative expansion

Equations of Motion: Matched asymptotic expansions

[Mino, Sasaki & Tanaka, 1997] [Poisson, 2003][Pound, 2008-]

far zone

Kerr geometry of primary plus perturbation generated by secondary.

near zone

Kerr geometry of secondary (in rest frame) plus perturbation generated by primary.

< D > < P > < P > <</p>

Summary of results from matching:

- 0th order: Secondary follows geodesic in Kerr background generated by primary.
- 1st order: Motion of secondary is corrected by effective force term (the Gravitational Self Force) obtained from retarded metric perturbation generated by a point particle with mass M_2 .
- Equivalently, (Detweiler-Whiting): Secondary follows geodesic in some effective perturbed vacuum spacetime.
- Similar results are obtained at higher-order.

Equations of Motion: Matched asymptotic expansions

[Mino, Sasaki & Tanaka, 1997] [Poisson, 2003][Pound, 2008-]

far zone

Kerr geometry of primary plus perturbation generated by secondary.

near zone

Kerr geometry of secondary (in rest frame) plus perturbation generated by primary.

イロト イポト イヨト イヨ

Summary of results from matching:

- Oth order: Secondary follows geodesic in Kerr background generated by primary.
- 1st order: Motion of secondary is corrected by effective force term (the Gravitational Self Force) obtained from retarded metric perturbation generated by a point particle with mass M_2 .
- Equivalently, (Detweiler-Whiting): Secondary follows geodesic in some effective perturbed vacuum spacetime.
- Similar results are obtained at higher-order.

Constants of Motion

Geodesics in Kerr spacetime are characterized by three constants of motion: $_{[Carter,\ 1968]}$

1 Energy, E

- **2** Angular momentum, L_z
- \bigcirc Carter constant, Q, (related to total angular momentum)

Orbital phases

Position along the orbit is described by three independently evolving phases:

- 2 q_r : related to radial motion
- **3** q_z : related to oscillations around equator

Analytic solutions

Analytic solutions are available:

- [Fujita&Hikida, 2009]
- [Hackmann et al., 2008,2010]

< D > < P > < P > <</p>

Constants of Motion

Geodesics in Kerr spacetime are characterized by three constants of motion: $_{[Carter,\ 1968]}$

1 Energy, E

- **2** Angular momentum, L_z
- \bigcirc Carter constant, Q, (related to total angular momentum)

Orbital phases

Position along the orbit is described by three independently evolving phases:

- 2 q_r : related to radial motion
- **3** q_z : related to oscillations around equator

Analytic solutions

Analytic solutions are available:

- [Fujita&Hikida, 2009]
- [Hackmann et al., 2008,2010]

- 日 ト - (司 ト - 三 ト - -

Motion of test spin

- de Sitter precession (geodetic effect)
- Lense-Thirring effect

< □ > < 同 >

Parallel transport

- Motion of test spin is governed by parallel transport.
- Analytic solution in terms of generic orbit is known. [Marck, 1983]

Equation of Motion; order reduction

$$\frac{D^2}{d\tau^2}x^{\alpha} = \mu F_1^{\alpha}(\gamma_{\tau};\tau) + \mu^2 F_2^{\alpha}(\gamma_{\tau};\tau) + \mathcal{O}(\mu^3)$$

Action-angle variables

$$\begin{split} \dot{q}^{i} &= \Omega^{i}(\mathbf{J}) + \mu g_{1}^{i}(\mathbf{J},\mathbf{q}) + \mu^{2} g_{2}^{i}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \\ \dot{J}_{i} &= 0 \qquad + \mu G_{j}^{1}(\mathbf{J},\mathbf{q}) + \mu^{2} G_{j}^{2}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Equation of Motion; order reduction

$$\begin{split} \frac{D^2}{d\tau^2} x^{\alpha} &= \mu F_1^{\alpha}(\gamma_{\tau};\tau) + \mu^2 F_2^{\alpha}(\gamma_{\tau};\tau) + \mathcal{O}(\mu^3) \\ \frac{D^2}{d\tau^2} x^{\alpha} &= \mu F_1^{\alpha}(\gamma_{\tau}^0;\tau) + \mu^2 \left(F_2^{\alpha}(\gamma_{\tau}^0;\tau) + \delta_{\gamma} F_1^{\alpha} \right) + \mathcal{O}(\mu^3) \end{split}$$

Action-angle variables

$$\begin{split} \dot{q}^i &= \Omega^i(\mathbf{J}) + \mu g_1^i(\mathbf{J}, \mathbf{q}) + \mu^2 g_2^i(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \\ \dot{J}_i &= 0 \qquad + \mu G_j^1(\mathbf{J}, \mathbf{q}) + \mu^2 G_j^2(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \end{split}$$

Equation of Motion; order reduction

$$\begin{split} \frac{D^2}{d\tau^2} x^{\alpha} &= \mu F_1^{\alpha}(\gamma_{\tau};\tau) + \mu^2 F_2^{\alpha}(\gamma_{\tau};\tau) + \mathcal{O}(\mu^3) \\ \frac{D^2}{d\tau^2} x^{\alpha} &= \mu F_1^{\alpha}(\gamma_{\tau}^0;\tau) + \mu^2 \left(F_2^{\alpha}(\gamma_{\tau}^0;\tau) + \delta_{\gamma} F_1^{\alpha} \right) + \mathcal{O}(\mu^3) \end{split}$$

Action-angle variables

$$\begin{split} \dot{q}^i &= \Omega^i(\mathbf{J}) + \mu g_1^i(\mathbf{J}, \mathbf{q}) + \mu^2 g_2^i(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \\ \dot{J}_i &= 0 \qquad + \mu G_j^1(\mathbf{J}, \mathbf{q}) + \mu^2 G_j^2(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \end{split}$$

$$\begin{split} \dot{q}^{i} &= \Omega^{i}(\mathbf{J}) + \mu g_{1}^{i}(\mathbf{J},\mathbf{q}) + \mu^{2} g_{2}^{i}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \\ \dot{J}_{j} &= 0 \qquad + \mu G_{j}^{1}(\mathbf{J},\mathbf{q}) + \mu^{2} G_{j}^{2}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Near identity averaging transform

$$\begin{split} \vec{q}^{i} &= q^{i} + \mu X_{1}^{i}(\vec{J},\vec{q}) + \mu^{2} X_{1}^{i}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \\ \vec{J}_{j} &= J_{j} + \mu Y_{j}^{1}(\vec{J},\vec{q}) + \mu^{2} Y_{j}^{2}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Averaged equations [Hinderer&Flanagan,2006,2012][MvdM, 2013]

$$\begin{split} \dot{\tilde{q}}^i &= \Omega^i(\vec{\tilde{J}}) \\ \dot{\tilde{J}}_j &= \mu \langle G_j^1 \rangle (\vec{\tilde{J}}) + \mu^2 \tilde{G}_j^2 [\vec{g}_1, \vec{G}^1, \langle G_j^2 \rangle] (\vec{\tilde{J}}) + \mathcal{O}(\mu^3) \end{split}$$

イロト イロト イヨト イヨ

$$\begin{split} \dot{q}^{i} &= \Omega^{i}(\mathbf{J}) + \mu g_{1}^{i}(\mathbf{J},\mathbf{q}) + \mu^{2} g_{2}^{i}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \\ \dot{J}_{j} &= 0 \qquad + \mu G_{j}^{1}(\mathbf{J},\mathbf{q}) + \mu^{2} G_{j}^{2}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Near identity averaging transform

$$\begin{split} \vec{q}^{i} &= q^{i} + \mu X_{1}^{i}(\vec{J},\vec{q}) + \mu^{2} X_{1}^{i}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \\ \vec{J}_{j} &= J_{j} + \mu Y_{j}^{i}(\vec{J},\vec{q}) + \mu^{2} Y_{j}^{2}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Averaged equations [Hinderer&Flanagan,2006,2012][MvdM, 2013

$$\begin{split} \dot{\tilde{q}}^i &= \Omega^i(\vec{J}) \\ \dot{\tilde{J}}_j &= \mu \langle G_j^1 \rangle (\vec{J}) + \mu^2 \tilde{G}_j^2 [\vec{g}_1, \vec{G}^1, \langle G_j^2 \rangle] (\vec{J}) + \mathcal{O}(\mu^3) \end{split}$$

Modelling EMRIs using Self-Force

イロト イロト イヨト イヨ

$$\begin{split} \dot{q}^i &= \Omega^i(\mathbf{J}) + \mu g_1^i(\mathbf{J}, \mathbf{q}) + \mu^2 g_2^i(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \\ \dot{J}_j &= 0 \qquad + \mu G_j^1(\mathbf{J}, \mathbf{q}) + \mu^2 G_j^2(\mathbf{J}, \mathbf{q}) + \mathcal{O}(\mu^3) \end{split}$$

Near identity averaging transform

$$\begin{split} \vec{q}^{i} &= q^{i} + \mu X_{1}^{i}(\vec{J},\vec{q}) + \mu^{2} X_{1}^{i}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \\ \vec{J}_{j} &= J_{j} + \mu Y_{j}^{i}(\vec{J},\vec{q}) + \mu^{2} Y_{j}^{2}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Averaged equations (if $ec{k}\cdotec{\Omega}
eq 0$) [Hinderer&Flanagan,2006,2012][MvdM, 2013]

$$\begin{split} \dot{\tilde{q}}^i &= \Omega^i(\vec{J}) \\ \dot{\tilde{J}}_j &= \mu \langle G_j^1 \rangle (\vec{J}) + \mu^2 \tilde{G}_j^2 [\vec{g}_1, \vec{G}^1, \langle G_j^2 \rangle] (\vec{J}) + \mathcal{O}(\mu^3) \end{split}$$

(a)

$$\begin{split} \dot{q}^{i} &= \Omega^{i}(\mathbf{J}) + \mu g_{1}^{i}(\mathbf{J},\mathbf{q}) + \mu^{2} g_{2}^{i}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \\ \dot{J}_{j} &= 0 \qquad + \mu G_{j}^{1}(\mathbf{J},\mathbf{q}) + \mu^{2} G_{j}^{2}(\mathbf{J},\mathbf{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Near identity averaging transform

$$\begin{split} \vec{q}^{i} &= q^{i} + \mu X_{1}^{i}(\vec{J},\vec{q}) + \mu^{2} X_{1}^{i}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \\ \vec{J}_{j} &= J_{j} + \mu Y_{j}^{1}(\vec{J},\vec{q}) + \mu^{2} Y_{j}^{2}(\vec{J},\vec{q}) + \mathcal{O}(\mu^{3}) \end{split}$$

Averaged equations [Hinderer&Flanagan,2006,2012][MvdM, 2013]

$$\begin{split} \dot{\tilde{q}}^i &= \Omega^i(\vec{\tilde{J}}) \\ \dot{\tilde{J}}_j &= \mu \langle G_j^1 \rangle (\vec{\tilde{J}}) + \mu^2 \tilde{G}_j^2 [\vec{g}_1, \vec{G}^1, \langle G_j^2 \rangle] (\vec{\tilde{J}}) \\ &+ \mu^{\frac{3}{2}} \sum_{\vec{k}} G_j^{res} [\langle \vec{G}^1 \rangle] (\vec{\tilde{J}}, \vec{k} \cdot \vec{q}) \delta(\vec{k} \cdot \vec{\Omega}) + \mathcal{O}(\mu^3) \end{split}$$

< ロ > < 回 > < 回 > <</p>

Resonances $\vec{k} \cdot \vec{\Omega} = 0$

- Phase synchronization allows coherent build up of otherwise oscillatory effects.
- Resonances involving just 2 phases occur generically in EMRIs in LISA band.

イロト イポト イヨト イヨ

rz-resonances

$$\mu^{\frac{3}{2}} \sum_{\vec{k}} G^{res}_j [\langle \vec{G}^1 \rangle] (\vec{J}, \vec{k} \cdot \vec{q}) \delta(\vec{k} \cdot \vec{\Omega})$$

- Coherent build of oscillatory effects leads to jumps in constants of motion.[Flanagan& Hinderer, 2012]
- Jump is sensitive to resonant phase, $\vec{k} \cdot \vec{q}$.
- Can be obtained from averaged fluxes on resonant geodesics.[MvdM, 2013]
- "Resonant locking" unlikely.[MvdM, 2013]

$r\phi$ - and $z\phi$ - resonances[Hirata, 2012][MvdM, 2014]

Resonances involving ϕ motion:

- Cannot affect evolution of "intrinsic" orbital parameters.
- Can affect "extrinsic" parameters of EMRI systems such as CoM velocity ("Kicks")

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

rz-resonances

$$\mu^{\frac{3}{2}} \sum_{\vec{k}} G_j^{res}[\langle \vec{G}^1 \rangle](\vec{J},\vec{k}\cdot\vec{q}) \delta(\vec{k}\cdot\vec{\Omega})$$

- Coherent build of oscillatory effects leads to jumps in constants of motion.[Flanagan& Hinderer, 2012]
- Jump is sensitive to resonant phase, $\vec{k} \cdot \vec{q}$.
- Can be obtained from averaged fluxes on resonant geodesics.[MvdM, 2013]
- "Resonant locking" unlikely. [MvdM, 2013]

$r\phi$ - and $z\phi$ - resonances[Hirata, 2012][MvdM, 2014]

Resonances involving ϕ motion:

- Cannot affect evolution of "intrinsic" orbital parameters.
- Can affect "extrinsic" parameters of EMRI systems such as CoM velocity ("Kicks")

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Numerical calculation

Modelling EMRIs using Self-Force

Maarten van de Meent

 $\dot{J}_j = \mu \langle G_j^1 \rangle (\mathbf{J}) + \mathcal{O}(\mu^{3/2})$

Averaged fluxes $\langle G_i^1 \rangle (\mathbf{J})$

The (long term) average rate of change of the constants of motion can be obtained from the GW flux towards infinity and into the primary black hole.

- $\langle \dot{E} \rangle$ from the energy flux.
- $\langle \dot{L}_z \rangle$ from the angular momentum flux.
- $\langle \dot{Q} \rangle$ see [Sago et al., 2006].

State-of-the-art

• Flux calculations sourced by generic orbits in Kerr spacetime. [Drasco & Hughes, 2006][Fujita, Hikida & Tagoshi, 2009].

To Do:

• Fill orbital parameter space with numerical flux data (and find suitable interpolation/surrogate).

イロト イポト イヨト イヨ

 $\dot{J}_j = \mu \langle G_j^1 \rangle (\mathbf{J}) + \mathcal{O}(\mu^{3/2})$

Averaged fluxes $\langle G_i^1 \rangle (\mathbf{J})$

The (long term) average rate of change of the constants of motion can be obtained from the GW flux towards infinity and into the primary black hole.

- $\langle \dot{E} \rangle$ from the energy flux.
- $\langle \dot{L}_z \rangle$ from the angular momentum flux.
- $\langle \dot{Q} \rangle$ see [Sago et al., 2006].

State-of-the-art

• Flux calculations sourced by generic orbits in Kerr spacetime. [Drasco & Hughes, 2006][Fujita, Hikida & Tagoshi, 2009].

To Do:

• Fill orbital parameter space with numerical flux data (and find suitable interpolation/surrogate).

イロト イポト イヨト イヨ

 $\dot{J}_j = \mu \langle G_j^1 \rangle (\mathbf{J}) + \mathcal{O}(\mu^{3/2})$

Averaged fluxes $\langle G_i^1 \rangle (\mathbf{J})$

The (long term) average rate of change of the constants of motion can be obtained from the GW flux towards infinity and into the primary black hole.

- $\langle \dot{E} \rangle$ from the energy flux.
- $\langle \dot{L}_z \rangle$ from the angular momentum flux.
- $\langle \dot{Q} \rangle$ see [Sago et al., 2006].

State-of-the-art

• Flux calculations sourced by generic orbits in Kerr spacetime. [Drasco & Hughes, 2006][Fujita, Hikida & Tagoshi, 2009].

To Do:

 Fill orbital parameter space with numerical flux data (and find suitable interpolation/surrogate).

イロト イポト イヨト イヨト

$$\dot{\tilde{J}}_{j} = \mu \langle G_{j}^{1} \rangle (\mathbf{\tilde{J}}) + \mu^{2} \tilde{G}_{j}^{2} [\mathbf{g}_{1}, \mathbf{G}^{1}, \langle G_{j}^{2} \rangle] (\mathbf{\tilde{J}})$$

g_1, G^1

(first order) Gravitational Self Force (independent of secondary spin)

ø spin-force (independent of self-field)

$\langle G^2 angle$ second order "flux

- Correction to 1st order flux due to secondary spin.
- Orrection to 1st order flux due to inspiral deviation from geodesic.
- Second order gravitational self-force.

$$\dot{\tilde{J}}_{j} = \mu \langle G_{j}^{1} \rangle (\mathbf{\tilde{J}}) + \mu^{2} \tilde{G}_{j}^{2} [\mathbf{g}_{1}, \mathbf{G}^{1}, \langle G_{j}^{2} \rangle] (\mathbf{\tilde{J}})$$

g_1, G^1

- (first order) Gravitational Self Force (independent of secondary spin)
- ø spin-force (independent of self-field)

$\langle G^2 angle$ second order "flux"

- Correction to 1st order flux due to secondary spin.
- e Correction to 1st order flux due to inspiral deviation from geodesic.
- **8** Second order gravitational self-force.

Spin force

Myron Mathisson

Achilles Papapetrou

Mathisson-Papapetrou spin-force

- force induced on geodesic by the presence of spin on test object.
- first order correction in μ (linear in a_2 !)
- first derived by Papapetrou [Papapetrou, 1951].
- analytic expression in terms of position, velocity, and spin-vector.
- spin supplementary condition follows from asymptotic match procedure.

MiSaTaQuWa formula

[Mino,Sasaki&Tanaka,1996][Quinn&Wald,1996]

$$\frac{D^2}{d\tau^2}x^\alpha = \mu F^\alpha[h^R]$$

 h^{R} is "regular" part of (retarded) metric perturbation produced by point particle.

Methods for obtaining regular part

- 1 Mode-sum regularization [Barack&Ori,2001]
- Ø Effective source methods [Barack&Golbourn,2008]
- 3 Green's function methods [Mino, Sasaki & Tanaka, 1996]

Time domain

- Decompose field equations in spherical harmonics.
- Numerically solve system of 1+1D PDEs on a grid.
- [Barack, Lousto, Sago]
- 2+1D and 3+1D methods also explored

Frequency domain

- Further decompose equations in Fourier modes.
- Numerically solve system of ODEs.

イロト イポト イヨト イヨ

 [Barack, Burko, Detweiler, Warburton, Akcay, Kavanagh, Ottewill, Evans, Hopper, ...]

State-of-the-art

- Self-force calculations using a wide variety of methods (Time domain, frequency domain, mode-sum, effective source, etc.)
- eccentricities up to $\lesssim 0.8$. [Osburn, Warburton& Evans, 2016]

The problem with Kerr

No spherical symmetry. Field equations do not decouple in "spherical" harmonics.

Time domain

- Decompose field equations in azimuthal *m*-modes.
- Numerically solve system of 2 + 1D PDEs on a grid.
- [Dolan, Wardell, Barack, Thornburg]
- Issues with numerically unstable gauge modes

Frequency domain

- Teukolsky equation for Weyl scalars ψ_0 and ψ_4 does decouple in Fourier modes.[Teukolsky,1972]
- Can be solved using semi-analytical methods.[Mano,Suzuki&Tagasugi,1996]
- Metric perturbation can be reconstructed from ψ_0 and ψ_4 in radiation gauge.[Chrzanowski,Cohen,Kegeles, 1970s]

イロト イポト イヨト イヨト

[Friedman, Keidl, Shah, MvdM, ...]

State-of-the-art

- GSF on eccentric equatorial orbits [MvdM, 2016]
- Generic orbits... (coming soon)

Range of capabilities

- Any value of the spin parameter a.
- Any semilatus rectum p (including fairly high whirl numbers)
- Eccentricities upto $e \lesssim 0.8$
- Equatorial orbits (inclined orbits in the works)

Second order challenge

- Second order GSF essential ingredient for 1PA evolution.
- Technical formalism in place [Pound, Rosenthal, Gralla, Detweiler,...]
- Challenges in "UV"
- Challenges in "IR"

Status

First numerical calculations (Schwarzschild circular orbits) "under evaluation".

Inspiral evolution

Maarten van de Meent

Self-forced inspirals: Schwarzschild

[Warburton, Akcay, Barack, Gair & Sago, 2012] [Osburn, Warburton & Evans, 2016]

Osculating geodesics

- GSF sourced by instantaneously tangent geodesic.
- No second order GSF included.
- Conservative GSF effects add phase difference of several tens of radians over inspiral.

$$\label{eq:multiplicative} \begin{split} \mu &= 10^{-5} \\ \text{initial data: } p = 12, \ e = 0.81 \\ 2115.5, \ 500, \ 100, \ \text{and} \ 1 \ \text{day(s)} \ \text{before} \\ \text{plunge.} \end{split}$$

• • • • • • • • • • • •

Validation using gauge invariants

Maarten van de Meent

Gauge dependence

Self-force is fundamentally gauge dependent. Therefore need to calculate invariant quantities for comparison with other methods.

Invariants

- Energy & angular momentum fluxes Kerr, eccentric equatorial
- Detweiler-Barack-Sago redshift Kerr, eccentric equatorial
- Periapsis precession

Schwarzschild, Kerr

• ISCO shift

Schwarzschild, Kerr

- Spin precession ("self-torque") Schwarzschild eccentric
- Tidal invariants
 Schwarzschild, Circular

Crosschecks with

- Other self-force calculations (different method, gauge, etc.)
- post-Newtonian theory
- Numerical relativity
- Effective-One-Body models

イロト イボト イヨト イヨ

Periapsis advance of circular orbits [MvdM,2016]

а

< □ > < 同 >

9

500

Status overview

Status

- Formalism mostly in place
- 1GSF calculations in Schwarzschild now routine
- 1GSF in Kerr now available for equatorial orbits
- First self-forced inspirals

To do...

- Numerical 2GSF calculations (soon...)
- 1GSF on Kerr generic orbits (soon...)
- self-forced inspirals in Kerr
- include secondary spin effects & 2GSF

Image: A mathematical states and a mathem

waveforms

The End

Thank you for listening!

Acknowledgments

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 705229.