Gravitational waveforms from numerical simulations of binary-black-hole mergers

Lawrence E. Kidder

Cornell Center for Astrophysics and Planetary Science Cornell University

The Era of Gravitational-Wave Astronomy 28 June 2017, IAP, Paris, France

Simulating eXtreme Spacetimes
Black holes, neutron stars, and beyond...

Outline

- Motivation
- Numerical relativity techniques
- two different approaches
- extracting the physics
- Results
- direct comparison to observations
- testing, improving, and building analytic waveform models
- remnant properties: large kicks!
- spacetime dynamics
- astrophysical implications and EM counterparts will be covered by Manuela Campanelli on Friday
- Future work
- Conclusions

Why model compact binaries?

- Two-body problem is a fundamental problem in gravity
- No known exact solution in theory of general relativity
- Want large compactness $\frac{G M}{R c^{2}}$ to probe strong gravity
- Sun ~ 10^{-6}
- White Dwarf ~ 10^{-4}
- Neutron star ~ 0.1
- Black hole ~ 1
- One of the most promising sources of detectable gravitational waves
- Mergers of black holes are detectable across a wide frequency range
- Black hole mergers "only" require solving the vacuum Einstein equations

Payoffs from binary black hole simulations

What do we learn?

- Dynamics of strongly warped spacetime
- Gravitational waveforms

How can they be used?

- Directly compare theory to observations
- Improve analytic waveform models
- Determine remnant black hole properties
- Explore nonlinear behavior of gravity
- Produce visualizations for public outreach

Solving the vacuum Einstein equations on a computer

 Goal: determine the spacetime metric describing the inspiral, merger, and ringdown of a binary black hole system- Solve as an initial-boundary value problem
- Slice spacetime into spatial hypersurfaces
- Constraint equations
- Evolution equations
- Coordinate freedom
- Specify initial conditions that describe a binary black hole system and satisfy the constraint equations
- Choose the computational domain on which to do the evolution
- deal with singularities inside the black holes
- introduce artificial outer boundary
- Choose a formulation of the evolution equations
- Choose a numerical algorithm
- Specify coordinate conditions
- Specify boundary conditions
- Decide how to control of constraint violations

Brief History of BBH simulations

- 1964 - First attempt: 2D head-on equal-mass
[Hahn, Lundquist; Ann. Phys. 29, 304 (1964)]
- mid-1970s - First success: 2D head-on equal-mass
[Smarr, Cadez, DeWitt, Eppley; PRD 14, 2443 (1976)]
- mid-1990s - Computational Grand Challenge
- 2005 - First successful inspiral and merger (unique methods)
[Pretorius; gr-qc/0507014]
- 2005 - Moving punctures approach
[Campanelli, Lousto, Marronetti, Zlochower; gr-qc/0511048]
[Baker, Centrella, Choi, Koppitz, van Meter; gr-qc/0511103]
Adopted by many groups: RIT, GSFC, GaTech, Illinois, FAU, LSU, Maryland, AEI, Jena, Vienna, Palma, ...
- 2006 (inspiral); 2008 (merger) - Spectral Einstein Code (SXS)
[Boyle et al.; 0710.0158] [Scheel et al.; 0810.1767]

Independent approaches, multiple codes

- Puncture codes:
- Robust
- Fairly straightforward to implement
- Open-source infrastructure
- Good for short inspirals (< 10 orbits)
- Many codes, most share common infrastructure (BAM independent)
- LazEv(RIT), Hahndol(GSFC), Maya(GaTech), CCATIE(AEI), BAM(Jena,Cardiff,Palma,Vienna), Llama(AEI,Palma), Lean, UIUC,
- Spectral Einstein Code (SXS)
- more accurate and efficient
- can do long inspirals (20-40 orbits in reasonable time)
- Black-box for $1 \leq q \leq 4, \chi<0.8$

Independent approaches, multiple codes

Initial data:

- Formulation of Einstein constraint equations
- SpEC: Conformal thin sandwich [York (1999)] [Pfeiffer, York (2003)]
- LazEv, Maya, BAM: conformal [Bowen, York (1989)]]
- Singularity treatment
- SpEC: excision [Cook (2002)] [Cook, Pfeiffer (2004)]
- LazEv, Maya, BAM: puncture data [Brandt, Brügmann (1997)]
- Numerical method
- SpEC: pseudospectral [Pfeiffer, Kidder, Scheel, Teukolsky (2003)]
- LazEv, Maya, BAM: TwoPuncture (pseudospectral)
[Ansorg, Brügmann, Tichy (2004)]
- Achieving low orbital eccentricity
- SpEC: iterative eccentricity removal [Pfeiffer et al. (2007)]
[Buonanno et al. (2011)]
- LazEv: post-Newtonian inspiral [Healy et al. (2017)]
- BAM: [Púrrer et al. (2012)]

Independent approaches, multiple codes

Evolution:

- Numerical algorithm
- SpEC: multi-domain pseudo-spectral methods [Kidder et al. (2002)]
- LazEv: high-order finite-differences [Zlochower et al. (2005)]
- Maya: high-order finite-differences [Hermann, Shoemaker, Laguna (2006)] [Vaishnav et al. (2007)] [Healy, Levin, Shoemaker (2009)] [Pekowsky et al. (2013)]
- BAM: high-order finite-differences [Brügmann et al. (2008)] [Husa et al. (2008)]
- Formulation of Einstein evolution equations
- SpEC: First-order generalized harmonic [Friedrich (1985)]
[Pretorius (2005)] [Lindblom et al. (2006)]
- LazEv, Maya, BAM: BSSNOK [Nakamura, Oohara, Kojima (1987)]
[Shibata, Nakamura (1995)] [Baumgarte, Shaprio (1999)]
- Singularity treatment
- SpEC: Excision [Kidder et al. (2002)]
- LazEv, Maya, BAM: Moving punctures [Campanelli et al. (2006)]
[Baker et al. (2006)]

Independent approaches, multiple codes

Evolution:

- Mesh refinement
- SpEC: hpr-refinement, multiple coordinate frames
[Hemberger et al. (2013)] [Szilágyi (2014)]
- LazEv, Maya: Moving boxes mesh refinement (Carpet/EinsteinToolkit/Cactus) [Schnetter, Hawley, Hawke (2004)]
- Coordinate (gauge) conditions
- SpEC: Damped harmonic [Szilágyi, Lindblom, Scheel (2009)]
- LazEv: evolved lapse and shift [Bona et al. (1997)] [Alcubierre et al. (2003)] [van Meter et al. (2006)]
- Boundary conditions
- SpEC: minimally-reflective, constraint-preserving [Lindblom et al. (2006)] [Rinne, Lindblom, Scheel (2007)]
- LazEv: Sommerfeld

Extracting physics

Measuring the mass and spin of the black holes:

- determined from the apparent horizon
- SpEC: fast flow algorithm [Gundlach (1998)]
- LazEv: AhFinderDirect [Thornburg (2004)]
- definition of spin
- SpEC: quasilocal (eigenvalue problem) [Cook, Whiting (2007)] [Owen (2007)]
- LazEv: isolated horizon [Dreyer et al. (2003)] [Campanelli et al. (2007)]
- mass determined from area of horizon and spin

Extracting physics

Extracting the gravitational waveform:

- extract information at finite radii
- Newman-Penrose scalar Ψ_{4}
- SpEC: [Pfeiffer et al. (2007)] [Scheel et al. (2009)] [Boyle et al. (2007)
- LazEv: [Campanelli, Lousto (1997)] [Lousto, Zlochower (2007)]
- Maya: [Reisswig (2009)]
- BAM: [Brügmann et al. (2008)]
- RWZ extraction of h
- SpEC: [Buchman, Sarbach (2007)] [Rinne et al. (2009)]
- extrapolate to infinity
- SpEC: [Boyle, Mroué (2009)]
- LazEv: perturbative extrapolation [Nakano et al. (2015)]
- Cauchy-characteristic extraction
- SpEC: [Bishop et al. (1997)] [Gomez et al. (2007)] [Reisswig et al. (2013)] [Handmer, Szilágyi (2015)]
- spin-weighted spherical harmonic decomposition

Running a BBH simulation

- Choose desired physical configuration q, S_{1}, S_{2}, e at some initial orbital parameters $\omega_{\text {orb }}, d, v_{r}$
- Iterative initial data solve to get desired parameters
- Evolve for several orbits, measure eccentricity and adjust initial orbit parameters
- Also adjust physical parameters as black holes relax
- Once desired setup is achieved, evolve through merger and ringdown until waves reach extraction surfaces
- Extrapolate/Evolve extracted waves to null infinity

What can be simulated?

- Number of orbits before merger
- Desired orbits for testing analytic models?
- Desired orbits for parameter estimation?
- For low mass systems, need to hybridize to cover detector frequency band
- Parameter space
- Total mass m scales out of the problem
- Mass ratio: $1 \leq q \lesssim 20$ $q=100$ [Lousto, Zlochower; 1009.0292]
- Spins: $0 \leq \chi \lesssim 0.9$ higher spin requires improved initial data
- Precession: no problem
- Eccentricity: no problem

SXS Large Spins 0.994

Waveform phase error:

[Scheel et al.; 1412.1803]

- Equal mass
- aligned spins
- $\chi_{a}=\frac{S_{a}}{m_{a}^{2}}=0.994$
- 25.4 orbits.
- $\chi_{f}=0.949931(5)$
- $E_{r}=0.11351(5) M$

RIT Large spins compared to SpEC

Equal-mass, aligned spins, $\chi_{a}=\frac{S_{a}}{m_{a}^{2}}=0.99,10$ orbits.
Initial data: Superposed Kerr-Schild [Ruchlin, Healy, Lousto, Zlochower; 1410.8607]
Evolution: CCZ4 evolution system [Alic et al.; 1106.2254]

Top: $(2,2)$ mode for SpEC vs RIT [Zlochower, Healy, Lousto, Ruchlin; 1706.01980] Bottom Left: fractional amplitude difference Bottom Right: phase difference (oscillation likely due to eccentricity)

RIT Flip Flop

Equal mass, $\chi_{1}=\frac{s_{1}}{m_{1}^{2}}=0.2$ aligned, $\chi_{2}=0.8$ z-component anti-aligned, in-plane towards companion

- 48 orbits, 3 precession cycles
- h_{22} and flips direction
- $\hat{L}, \hat{\jmath}, \hat{S}_{1}$

Left: in orbital frame
Right: in coordinate frame

- h_{21}

[Lousto, Healy; 1410.3830]

Waveform catalogs: SpEC

[Mroue et al.; 1304.6077] [Chu et al.; 1512.06800]
Publicly available at www.black-holes.org/waveforms

- 8-dimensional parameter space: mass-ratio, spins, eccentricity
- Left: Currently 316 waveforms (93 precessing) Median: 22 orbit
- Right: Soon another 1000+ waveforms (800+ precessing)

Waveform catalogs: RIT

[Healy, Lousto, Zlochower, Campanelli; 1703.03423]
Publicly available at http://ccrg.rit.edu/~RITCatalog

- Currently 126 simulations
- Two longest; equal-mass non-spinning, flip flop

Waveform catalogs: RIT

Top: χ_{m}
Middle: χ_{M}
Bottom: Count

Left: $\frac{1}{6} \leq q \leq 1$
Middle: χ_{m}
Right: χ_{M}

Waveform catalogs: GaTech

[Jani, Healy, Clark, London, Laguna, Shoemaker; 1605.03204]
Publicly available at www.einstein.gatech.edu/catalog

- Currently 452 waveforms, a few to 10 orbits

Vertical axes: mass ratio

$$
\begin{array}{|l}
\hline \text { Precessing-Spin: Unequal-Mass (197 simulations) } \\
\text { Precessing-Spin: Equal-Mass (127 simulations) }
\end{array}
$$

Left: aligned spin
Right: precessing

Waveform catalogs: GaTech

Count vs $M \omega_{\text {orb }}$
For AdvLIGO this limits minimum mass to $[50,110] M_{\odot}$

Comparison with observations : GW150914

[Abbot et al.; 1602.03837]

- BH masses: $36 \pm 4 M_{\odot}$ and $29 \pm 4 M_{\odot}$
- Final mass: $62 \pm 4 M_{\odot}$
- GW Energy: $3.0 \pm 0.5 M_{\odot} c^{2}$
- Distance: $410 \pm 170 \mathrm{Mpc}$

Hanford, Washington
Livingston, Louisiana

Comparison with observations: GW150914

[Abbott et al.; 1606.01262]

Many different
systems consistent
Initial spins poorly constrained

Excellent Match
Fair match
Poor match

Code comparisons: GW150914

SpEC (SXS) waveform compared to LazEv (RIT) waveform $q=\frac{m_{2}}{m_{1}}=1.22, \chi_{1}=\frac{S_{1}}{m_{1}^{2}}=-0.44, \chi_{2}=0.33$
[Lovelace et al.; 1607.05377]

Red: RIT(N120-N110) Blue: SXS(L6-L5)

Black: RIT - SXS

Left: Relative amplitude difference

Right: phase difference

Comparison with observations: GW151226

[Abbot et al.; 1606.04855]
NR: SpEC waveform, 46 orbits, 2.5 months
$q=3.32, \chi_{1}=0.5226, \chi_{2}=-0.4482$
‘

Community NR projects

- Samurai code-comparison of equal-mass, non-spinning waveforms between SpEC, BAM, CCATIE, Hahndol, Maya [Hannam et al.; 0901.2437]
- Numerical INJection Analysis (NINJA) NR - data analysis project [Aylott et al.; 0901.4399]
- NINJA-2 constructed 63 NR-PN hybrids [Ajith et al.; 1201.5319] and did blind-injection test of 7 waveforms [Aasi et al.; 1401.0939]
- NR-AR NR - analytic modelers project compared 25 NR waveforms by 9 codes to 5 analytic models [Hinder et al.; 1307.5307]

Informing and testing analytic models

- Effective-one-body model
- SEOBNRv1 (spinning, non precessing) [Taracchini et al.; 1202.0790] calibrated with 2 spinning, 5 non-spinning SpEC simulations
- SEOBNRv2 (spinning, non-precessing, used in O1)
[Taracchini et al.; 1311.2544]
calibrated with 8 non-spinning, 30 spinning SpEC simulations
- SEOBNRv3 (spinning, precessing) [Pan et al.; 1307.6232] based on v2, tested with 2 precessing SpEC waveforms further tested with 70 precessing SpEC waveforms
[Babak, Taracchini, Buonanno; 1607.05661]
- SEOBNRv4 (spinning, non-precessing) [Bohe et al.; 1611.03703] calibrated with $140 \mathrm{SpEC}, 1$ BAM waveform
- IHES-EOB (non-spinning) [Damour, Nagar, Bernuzzi; 1212.4357] calibrated to 5 SXS waveforms
- EOB (spinning, non-precessing) [Nagar et al.; 1506.08457] calibrated with 40 SpEC, 10 Llama waveforms

Informing and testing analytic models

- Phenom models
- PhenomB (non-precessing) [Ajith et al.; 0909.2867] calibrated against 24 BAM waveforms; tested with BAM, Llama, CCatie, LazEv, SpEC waveforms
- PhenomC (non-precessing) [Santamaria et al.; 1005.3306] calibrated against BAM, Llama, LazEv, SpEC waveforms
- PhenomP (precessing) [Hannam et al.; 1308.3271] based on PhenomC, tested with 4 BAM waveforms
- PhenomD (non-precessing) [Khan et al.; 1508.07253] calibrated against 9 SpEC and 10 BAM waveforms [Husa et al.; 1508.07250]

Informing and testing analytic models

[Kumar et al.; 1601.05396]

- Test waveform models with 84 non-precessing SpEC simulations with $1 \leq q \leq 3$ and $\chi \leq 0.9$
- PhenomD and SEOBNRv2 both perform better than their predecessors

From left to right: Waveforms used to calibrate SEOBNRv1, SEOBNRv2, IMRPhenomC, IMRPhenomD

Informing and testing analytic models

Is there a systematic bias in analytic waveform models?

- inject numerical waveforms into zero noise detector
- estimate parameters with analytic waveform models [Abbott et al.; 1611.07531]

Left: Inject SpEC

Right: Inject BAM

Informing and testing analytic models

Calibrate SEOBNRv4 to 141 NR waveforms (140 SpEC, 1 BAM) Tested with 4 SpEC, 2 EinsteinTookit waveforms. [Bohe et al.; 1611.03703]

v
Left: $\chi_{\text {eff }}=\left(m_{1} \chi_{1}+m_{2} \chi_{2}\right) /\left(m_{1}+m_{2}\right)$

$$
\nu=\left(m_{1} m_{2}\right) /\left(m_{1}+m_{2}\right)^{2}
$$

v
Right: $\chi_{A}=\left(\chi_{1}-\chi_{2}\right) / 2$

SXS 170 Orbits

- $3 \times$ frequency range
- $40 M_{\odot}$ entire Advanced LIGO spectrum
[Szilagyi et al.; 1502.04953]

Waveform models vs 170 Orbits NR

- Standard PN ~ 10\%
- Phenom ~30\%
- uncalibrated EOB ~ 0.1\%
- calibrated EOBNR
~ 0.02\%
[Szilagyi et al.; 1502.04953]

NR surrogate models

- built from 744 NR waveforms [Blackman et al.; 1705.07089]
- 7-dimensional (full precession), but $1 \leq q \leq 2$ and $0 \leq \chi \leq 0.8$
- Covers 20 orbits before merger
- surrogate can be evaluated in $\approx 50 \mathrm{~ms}$

top: worst surrogate waveform bottom: worst SEOBNRv3 waveform

Parameter estimation using NR waveforms

- Bayesian method that directly compares GW data to NR simulations
- Using $\ell=3$ modes gain more information from the signal and can better constrain the parameters

Numerical Relativity Injection Infrastructure

[Schmidt, Harry, Pfeiffer; 1703.01076]

- include in LIGO Algorithms Library (LAL)
- NR groups provide data in given format
- NR waveforms can be used as simulated signals
- parameter estimation
- searches
- hardware injections
- handles subdominant modes and precession

Properties of the remnant

- Simulations provide remnant mass, spin, velocity
[Zlochower, Lousto; 1503.07536]
[Hofmann, Barausse, Rezolla; 1605.01938]
[Jimńez-Forteza et al.; 1611.00332]
[Healy, Lousto; 1610.09713]
[Bohé et al.; 1611.03703]
[Healy, Lousto, Zlochower; 1705.07034]

Large Kicks

- Anisotropic GW emission leads to net linear momentum flux
- Final black hole is kicked with respect to initial center of mass
- Non-spinning BHs $v_{\max } \approx 175 \pm 11 \frac{\mathrm{~km}}{\mathrm{~s}}$ at mass-ratio 2.77
[Gonzalez et al.; gr-qc/0610154]
- Spinning BHs give higher kicks
- Aligned spins $v_{\max } \approx 500 \frac{\mathrm{~km}}{\mathrm{~s}}$ [Herrmann et al.; gr-qc/0701143] [Koppitz et al.; gr-qc/0701163]
- Super kicks for spins equal and opposite in orbital plane $v_{\text {max }}$ up to $4000 \frac{\mathrm{~km}}{\mathrm{~s}}$! [Campanelli et al.; gr-qc/0701164]
- Hangup kicks, generic orientation $v_{\text {max }}$ up to $5000 \frac{\mathrm{~km}}{\mathrm{~s}}$! [Lousto, Zlochower; 1108.2009]
- $v_{\text {recoil }}>1000 \frac{\mathrm{~km}}{\mathrm{~s}}$ is between $0.1-17 \%$
[Zlochower, Lousto; 1503.07536]
- More on Friday from Manuela Campanelli

Evolution of the event horizon

[Bohn, Kidder, Teukolsky; 1606.00437]

- Need entire spacetime to find event horizon
- Integrate geodesics backwards in time
- Adaptive triangulation
- $q=6, \chi_{1}=0.9, \chi_{2}=0.3$ precessing

Evolution of the event horizon

Toroidal horizons

[Bohn, Kidder, Teukolsky; 1606.00436]

- Event horizon of a dynamical black hole can have either spherical or dynamical topology [Gannon (1976)]
- Torii must collapse faster than light-crossing time [Friedrich, Schleich, Witt (1993)] [Galloway (1995)] [Jacobsen, Venkataramani (1995)]
- Equivalently, can find another foliation where topology is spherical [Siino (1998)]
- Claim: during a generic merger, the topology of the event horizon can go through a toroidal phase. [Siino (1998)] [Husa, Winicour (1999)]
- Not seen in BBH evolutions
- Idea: reslice space time

Toroidal horizons

[Bohn, Kidder, Teukolsky; 1606.00436]

What does a binary black hole merger look like?

[Bohn et al.; 1410.7775]

What does a binary black hole merger look like?

Future work

- Expand parameter space of catalogs
- React to gravitational wave observations
- Test and improve analytic models
- Improve the accuracy and efficiency of simulations
- Longer simulations to cover frequency band for low-mass systems
- Louder signals provide better measurements
- Exploit parallelism to improve turn around time
- Simulating alternate theories of gravity
- f(R) [Cao, Galaviz, Li; 1608.0781]
- dynamical Chern-Simons [Okounkova et al.; 1705.07924]
- effective theories of gravity [Cayuso, Ortiz, Lehner; 1706.07421]
- Getting the details correct
- definitions of masses and spins
- waveform extraction

Summary

Gravitational waveforms from numerical simulations of binary black hole mergers are invaluable tools for data analysts and waveform modelers.

- Directly compare with observations
- Inform and test analytic waveform models
- Construct surrogate models

In addition numerical simulations of binary black holes:

- provide properties of the remnant black hole
- explore highly dynamical spacetimes
- produce movies for public outreach

