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Modeled	searches	for	compact	binaries

• Current	deployed	modeled	searches	for	compact	binaries	are	
restricted	to	aligned	spin systems,	that	do	not	precess,	and	include	
only	the	dominant	𝑙 = 2,𝑚 = ±2 harmonics
• However	the	ability	to	detect	precessing systems	can	be	an	important	
discriminant	for	formation	channels	(e.g.	common	evolution	vs
dynamical	capture);	likewise,	higher-order	modes	can	be	important	
for	higher	mass,	high	mass	ratio	systems
• In	this	talk	I	describe	a	new	technique	under	development	for	
including	arbitrary	modes,	and	the	unanswered	questions	in	its	
implementation	that	we	are	still	investigating	
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Preliminaries:	Response	at	an	interferometer

• The	gravitational	waveform	received	at	an	interferometer	with	
perpendicular	arms	may	be	written	as:	

• Here	we	have	separated	out	intrinsic parameters	�⃗� from	the	extrinsic:	
𝑟, 𝛼, 𝛿,𝜓, 𝜄, 𝜙 and	𝑡0.
• The	antenna	pattern	functions	𝐹2 and	𝐹× are	normally	written	as	
trigonometric	functions	of	the	three	angles,	and	the			56𝑌89 are	spin-
weighted	spherical	harmonics
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Preliminaries:	Statistics

• In	colored	Gaussian	noise,	the	probability	that	a	particular	stream	of	
data	𝑠(𝑡) is	observed	given	that	a	signal	ℎ(𝑡) is	present	is	
proportional	to	𝑒5

?
@(A5B|A5B),	where	the	inner-product	is	defined	as:

• For	a	statistic,	we	may	either	maximize the	probability	over	the	
extrinsic	parameters	(F-statistic;	Jaranowski et	al Phys.	Rev.	D58
063001)	or	marginalize (B-statistic;	Prix	&	Krishnan	Class.	Quant.	Grav.	
26 204013)
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Comparing	aligned	spin	to	precessing &	HOM

• If	we	consider	non-precessing systems	where	all	modes	with	𝑙 > 2 are	
negligible,	then	the	maximization	over	𝑟, 𝜙, 𝜓 and	𝜄 may	be	effectively	
performed	analytically,	leading	to	the	usual	F-statistic.	Maximization	over	
𝑡0 can	be	efficiently	accomplished	using	the	Fast	Fourier	Transform
• In	coincident	(as	opposed	to	coherent)	searches,	we	first	analyze	the	data	
in	each	interferometer	independently,	and	then	combine	triggers	above	a	
threshold	using	a	coincident	statistic.	When	analyzing	data	at	a	single	IFO	
for	aligned	spin,	we	may	also	analytically	maximize	over	sky	location	(𝛼, 𝛿)	
as	well,	leaving	only	intrinsic	parameters	to	be	searched	over
• None of	this	analytic	maximization	works	so	straightforwardly	when	modes	
other	than	𝑙 = 2, 𝑚 = 2 are	significant
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Overview	of	previous	work

• Several	authors	considered	template	families	for	precessing signals	
(Apostolatos;	Grandclemént &	Kalogera;	Buonanno,	Chen	&	Vallisneri
[BCV2]).
• More	recently,	more	sophisticated	precessingmodels	(SEOBNRv3:	Pan	et	al
Phys.	Rev.	D89,	084006;	IMRPhenomP:	Hannam et	al PRL	113,	151101)
have	been	proposed	and	used	in	parameter	estimation.
• Building	on	BCV2,	Pan	et	al developed	the	Physical	Template	Family search.	
(Phys.	Rev.D69,	104017)	This search considered single-spin	systemswith all
five 𝑙 = 2modes,	restricted by	polynomial constraints.	But	those
constraints were expensive to	solve and	never fully implemented.
• Harry et	al (Phys.	Rev.	D94 024012)	proposed	the	Sky	Max	SNR search.	It	
analytically		maximizes	over	sky	location,	and	uses	a	grid	search	over	the	
usual	intrinsic	parameters	as	well	as	the	inclination	angle	𝜄.
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Matrix	elements	and	the	rotation	group

• It	was	previously	observed	(Dhurandhar &Tinto	MNRAS	234 663–676)	that	
the	antenna	pattern	functions	can	be	expressed	as	linear	combinations	of	
the	matrix	elements	of	the	rotation	group,	SO(3)
• It	is	also	true	that	the	spin-weighted	spherical	harmonics	can	be	expressed	
in	terms	of	these	matrix	elements:

• So	we	can	either	set	𝜓 to	zero,	or	introduce	a	second	(redundant)	
polarization	angle	(compare	to	Harry	&	Fairhurst,	Phys.	Rev.	D83 084002)
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New	coordinates

• This	observation	means	that	we	can	re-express	our	first	equation	for	
ℎ(𝑡) entirely	in	terms	of	modes	depending	on	intrinsic	parameters	(in	
the	Fourier	domain),	a	single	amplitude,	and	matrix	elements	of	two	
elements	of	the	rotation	group:	one	describing	the	transformation	
from	the	source	to	radiation	frame,	and	another	describing	the	
transformation	from	radiation	to	detector	frame
• The	familiar	expressions	correspond	to	coordinatizing SO(3)	using	
three	Euler	angles to	describe	a	rotation.	But	we	can	maximize	(F-
statistic)	or	marginalize	(B-statistic)	using	whichever	coordinates	on	
SO(3)	are	most	convenient.
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New	coordinates	(II)

• For	our	purposes,	it	is	much	more	convenient	to	use	Cayley-Klein or	
quaternionic coordinates;	they	are	also	closely	related	to	Euler-
Rodrigues coordinates.
• For	ER	coordinates,	we	specify	a	unit	vector	𝑛F and	an	angle	𝜃.	The	
quaternionic and	Cayley-Klein	coordinates	are	then:
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First	result:	polynomial	expression

• It	is	now	possible	to	appeal	to	the	well-studied	representation	theory	
of	SO(3),	and	observe	that	in	terms	of	the	Cayley-Klein	coordinates,	
all	matrix	elements	are	polynomials.	Moreover,	we	have	seen	that	the	
only	constraint	among	these	parameters	is	the	single	constraint	𝑈𝑈 +
𝑉𝑉 = 1,	which	is	also	polynomial
• Thus,	for	any	number	of	additional	modes,	maximizing	over	the	
extrinsic	angular	variables	can	be	transformed	into	maximizing	a	
polynomial,	subject	to	a	polynomial	constraint
• When	marginalizing	over	these	variables,	the	measure	is	also	
comparatively	simple,	if	using	uniform-in-volume	priors
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Example:	single	detector,	precessing

• Consider	the	signal	observed	at	a	single	IFO,	for	a	precessing source	
where	all	modes	with	𝑙 > 2 are	negligible.	If	we	define:
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Example	(cont’d)
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• In	terms	of	the	𝑈, 𝑉 variables,	can	show:

• If	we	then	define	𝑋 = 𝐴𝑈,𝑌 = 𝐴𝑉,	we	have	two	unconstrained	
complex	coordinates,	and:



Maximizing	over	extrinsic	parameters	

• Even	in	this	simple	case	where	we	only	consider	a	single	detector,	when	we	
minimize	(𝑠 − ℎ|𝑠 − ℎ) over	our	𝑋,𝑌 variables,	we	will	get	an	eighth-order	
polynomial	in	two	complex	(equivalently,	four	real)	variables.		This	is	highly	
non-trivial	to	solve!	
• Currently,	investigating	best	way	to	do	this.	Considering	two	techniques	
from	computational	algebraic	geometry,	each	of	which	have	been	used	to	
solve	parametric	systems.	There	is	an	expensive,	off-line	part	of	the	
computation	that	only	needs	to	be	done	once,	and	then	a	faster	part	that	is	
done	for	each	instance	of	the	problem	(i.e.,	data	realization)
• May	require	hierarchical	approach:	find	points	of	interest	with	something	
cheap	to	compute	(e.g.	quadrature	sum	of	matched-filter	with	all	modes)	
and	then	deploy	the	maximization	over	a	subset	of	candidates.
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Extending	to	multi-detector

• Because	the	antenna	functions	can	also	be	expressed	in	terms	of	
matrix	elements,	we	can	also	consider	data	from	multiple	
interferometers	and	consider	a	statistic	that	either	maximizes	or	
marginalizes	∑(𝑠 − ℎ|𝑠 − ℎ) over	all	detectors
• Key	new	complication	is	that	there	is	a	time	delay	depending	on	the	
(unknown)	sky	position.	A	few	possibilities:
• Search	over	all	sky	positions:	a	coherent	search	(expensive)
• Treat	timing	of	single	IFO	triggers	as	exact,	to	determine	or	constrain	sky	
position
• Model	time-dependence	of	SNR	series	near	the	peak	(trigger	time)	and	so	
express	it	analytically	in	terms	of	polynomial	variables,	and	apply	the	same	
techniques
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Summary

• Including	the	effects	of	precession	or	higher-order	modes	could	be	
important	for	detecting	interesting	classes	of	signals.
• For	both	computational	efficiency	and	sensitivity,	we	would	like	our	search	
to	not	just	matched-filter	against	additional	modes,	but	also	quasi-
analytically	maximize	or	marginalize	over	extrinsic	parameters
• Naively,	this	looks	daunting,	as	it	involves	complicated	trigonometric	
functions	of	the	extrinsic	variables
• A	better	choice	of	coordinates,	however,	can	reduce	this	to	a	polynomial	
optimization	problem,	which	is	well-studied	in	applied	mathematics
• But	still	more	work	needed	to	know	which	solution	technique	is	most	
efficient,	and	how	efficient	it	is
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