Recalibrated waveforms for EMRIs in the EOB frame

HAN Wenbiao（韩文标）

＠Shanghai Astronomical Observatory，CAS；上海天文台
The Era of Gravitational－wave Astronomy＠Paris
2017.6.28

Outline

- Background and motivations;
- Numerical simulation for EMRIs;
- Effective-one-body formalism;
- Recalibrated waveforms in the EOB frame;
- Conclusions and prospect;

Extreme-mass-ratio inspirals: EMRIs

LISA

Chinese space-based projects:Taiji, Tianqin

eLISA
pathfinder has gotten good results

Why studying EMRIs

- very long time scale
- SNR 20 up to z=0.7, dozens/year
- studying physics near horizon of SMBH
- testing gravitation theory
- Cosmology

Extreme Mass Ratio Inspirals

- SNR 20 up to $z \approx 0.7$ for $10^{5}-10^{6} \mathrm{M}$ 。
- Dozens of events per year
- Mass, spin to 0.1\%-0.01 \%
- Quadrupole moment to $<0.001 \mathrm{M}_{0}^{3} \mathrm{G}^{2} / \mathrm{c}^{4}$
- Do Black Holes have hair?
- New objects in General Relativity

- Boson Stars, Gravastars, non-Kerr solutions (e.g. Manko-Novikov)
- Deviations from General Relativity
- Chern-Simons, Scalar-Tensor, light scalar fields (axions) and black hole bomb instabilities
- Each has specific GW fingerprint! From Danzmann, 2017 May 25, Beijing

Challenge:

Firstly, we should have huge numbers of waveform templates of EMRIs with high accuracy.

The role of waveform templates Matched filtering: find GWs from noise

GW150914: $20,4.6 \sigma \longrightarrow 24,5.1 \sigma$

EOBNR

GW151226: $\quad \longrightarrow \quad 13,5.0 \sigma$

Recognize the parameters of binaries

EMRIs : Calculation method of waveforms

Teukolsky equation

$$
\begin{aligned}
& {\left[\frac{\left(r^{2}+a^{2}\right)^{2}}{\Delta}-a^{2} \sin ^{2} \theta\right] \frac{\partial^{2} \Psi}{\partial t^{2}}+\frac{4 M a r}{\Delta} \frac{\partial^{2} \Psi}{\partial t \partial \phi}+\left[\frac{a^{2}}{\Delta}-\frac{1}{\sin ^{2} \theta}\right] \frac{\partial^{2} \Psi}{\partial \phi^{2}}-} \\
& -\Delta^{-s} \frac{\partial}{\partial r}\left(\Delta^{s+1} \frac{\partial \Psi}{\partial r}\right)-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)-2 s\left[\frac{a(r-M)}{\Delta}+\frac{i \cos \theta}{\sin ^{2} \theta}\right] \frac{\partial \Psi}{\partial \phi}- \\
& -2 s\left[\frac{M\left(r^{2}-a^{2}\right)}{\Delta}-r-i a \cos \theta\right] \frac{\partial \Psi}{\partial t}+\left(s^{2} \cot ^{2} \theta-s\right) \Psi=0 .
\end{aligned}
$$

energy flux, waveform

$$
\begin{aligned}
& \left.\frac{d E}{d t}=\left.\lim _{r \rightarrow \infty}\left|\frac{1}{4 \pi} \int_{\Omega}\right| \int_{-\infty}^{t} \psi d \tilde{t}\right|^{2} d \Omega\right], \\
& \frac{d P_{i}}{d t}=\lim _{r \rightarrow \infty}\left[\frac{1}{4 \pi} \int_{\Omega} l_{i}\left|\int_{-\infty}^{t} \psi d \tilde{t}\right|^{2} d \Omega\right], \psi \approx \frac{1}{2}\left(\frac{\partial^{2} h_{+}}{\partial t^{2}}-i \frac{\partial^{2} h_{\times}}{\partial t^{2}}\right) \\
& \frac{d L}{d t}=-\lim _{r \rightarrow \infty}\left\{\frac{1}{4 \pi} \operatorname{Re}\left[\int_{\Omega}\left(\partial_{\phi} \int_{-\infty}^{t} \psi d \tilde{t}\right)\left(\int_{-\infty}^{t} \int_{-\infty}^{t} \bar{\psi} d \tilde{t} d \hat{t}\right) d \Omega\right]\right\}
\end{aligned}
$$

Describe the orbit of small body

Effective-one-body (EOB) dynamics
Buonanno \& Damour, 1999, 2000,
Two-body problem \longrightarrow one-body problem

$$
m_{1} \quad m_{2}
$$

$$
\begin{aligned}
& M=m_{1}+m_{2} \\
& \mu=m_{1} m_{2} / M
\end{aligned}
$$

EOB formalism: dynamics

$$
\begin{array}{rlr}
\dot{r} & =\frac{\partial H_{\mathrm{EOB}}}{\partial p_{r}}, & H_{\mathrm{EOB}}=M \sqrt{1+2 \nu(H} \\
\dot{\phi} & =\frac{\partial H_{\mathrm{EOB}}}{\partial p_{\phi}}, & H_{\mathrm{eff}}=H_{\mathrm{NS}}+H_{\mathrm{S}}-\frac{1}{2 \lambda} \\
\dot{p_{r}} & =-\frac{\partial H_{\mathrm{EOB}}}{\partial r}+\mathcal{F}_{\phi} \frac{p_{r}}{p_{\phi}}, & H_{\mathrm{NS}}=\beta^{i} p_{i}+\alpha \sqrt{\mu^{2}+} \\
\dot{p_{\phi}} & =\mathcal{F}_{\phi}=H_{\mathrm{SO}}+H_{\mathrm{SS}} \\
\text { radiation reaction }
\end{array}
$$

$$
\begin{array}{rlrl}
\alpha & =\frac{1}{\sqrt{-g^{t t}}}, & \hat{\mathcal{F}} & =\frac{-1}{\nu \hat{\Omega}|\boldsymbol{r} \times \boldsymbol{p}|} \frac{d E}{d t} \boldsymbol{p}, \\
\beta^{i} & =\frac{g^{t i}}{g^{t t}}, & \frac{d E}{d t}=\frac{\hat{\Omega}^{2}}{8 \pi} \sum_{\ell=2}^{8} \sum_{m=0}^{\ell} m^{2}\left|\frac{\mathcal{R}}{M} h_{\ell m}\right|^{2} \\
\gamma^{i j} & =g^{i j}-\frac{g^{t i} g^{t j}}{g^{t t}}, &
\end{array}
$$

EOB formalism: waveforms of circular orbits

$$
\begin{align*}
& h_{\ell m}=h_{\ell m}^{\text {insp-plunge }} \theta\left(t_{\text {match }}^{\ell_{m}^{m}}-t\right)+h_{\ell m}^{\text {merger-RD }} \theta\left(t-t_{\text {match }}^{\ell_{m}^{m}}\right) \\
& h_{\ell m}^{\text {insp-plunge }}=h_{\ell m}^{\mathrm{F}} N_{\ell m} \\
& h_{\ell m}^{\mathrm{F}}=h_{\ell m}^{(N, \epsilon)} \hat{S}_{\mathrm{eff}}^{(\epsilon)} T_{\ell m} e^{i \delta_{\ell_{m}}}\left(\rho_{\ell m}\right)^{t} \\
& \text { factorized waveform } \\
& \text { Pan et al., PRD 84, } \\
& 124052 \text { (2011) } \\
& h_{\ell m}^{\operatorname{merger}-\mathrm{RD}}(t)=\sum_{n=0}^{N-1} A_{\ell m n} e^{-i \sigma_{\ell m n}\left(t-t_{\text {match }}^{\ell_{m}}\right)} \\
& \rho_{22}=1+\left(\frac{55 \nu}{84}-\frac{43}{42}\right) v_{\Omega}^{2}+\left(\frac{19583 \nu^{2}}{42336}-\frac{33025 \nu}{21168}-\frac{20555}{10584}\right) v_{\Omega}^{4}+\left(\frac{10620745 \nu^{3}}{39118464}-\frac{6292061 \nu^{2}}{3259872}+\frac{41 \pi^{2} \nu}{192}-\frac{48993925 \nu}{9779616}\right. \\
& \left.-\frac{428 \text { eulerlog }{ }_{2}\left(v_{\Omega}^{2}\right)}{105}+\frac{1556919113}{122245200}\right) v_{\Omega}^{6}+\left(\frac{9202 \operatorname{eulerlog}_{2}\left(v_{\Omega}^{2}\right)}{2205}-\frac{387216563023}{160190110080}\right) v_{\Omega}^{8} \\
& +\left(\frac{439877 \operatorname{eulerlog}_{2}\left(v_{\Omega}^{2}\right)}{55566}-\frac{16094530514677}{533967033600}\right) v_{\Omega}^{10} \text {, } \tag{B9a}
\end{align*}
$$

Accuracy of factorized PN waveform applying to EMRI

Accuracy requirement of EMRIs

- A typical EMRIs have M / μ cycles
- During the inspirals, for dephase less than 2pi, one asks

$$
\Delta \dot{E} / \dot{E}<\mu / M
$$

- So for typical mass-ratio $10 \wedge 5$, the relative precision should be 10^-5.
- F-R PN waveforms break down even for circular orbits

Highly accurate and efficient waveforms

- Numerical simulations are inefficient;
- We try to work on semi-analytical models
- Yunes et al., 2011

$$
\begin{aligned}
\rho_{\text {Cal }}^{22} & =\rho^{22}+\left[a_{22}^{(9,1)}+b_{22}^{(9,1)} \text { eulerlog }_{2} v^{2}\right] \bar{q} v^{9} \\
& +\left[a_{22}^{(12,0)}+b_{22}^{(12,0)} \text { eulerlog } v_{2} v^{2}\right] v^{12}, \\
\rho_{\text {Cal }}^{33} & =\rho^{33}+\left[a_{33}^{(8,2)}+b_{33}^{(8,2)} \text { eulerlog }_{3} v^{2}\right] \bar{q}^{2} v^{8} \\
& +\left[a_{33}^{(10,0)}+b_{33}^{(10,0)} \text { eulerlog } v_{3} v^{2}\right] v^{10},
\end{aligned}
$$

Yunes' s results:

Yunes' s results:

Sysl: 10 vs 10^5 solar mass
SysII: 10 vs 10^6 solar mass

Our model: fully calibrated version1-polynomials

$$
\begin{aligned}
\dot{E}^{\infty} & =\sum_{i=0}^{n} a_{i}^{\prime} x^{i}, \quad \dot{E}^{\mathrm{H}}=\sum_{i=0}^{n} b_{i}^{\prime} x^{i} \\
\operatorname{Re}\left[H_{l m}\right] & =\sum_{i=0}^{n} R_{l m}^{\prime i} x^{i}, \quad \operatorname{Im}\left[H_{l m}\right]=\sum_{i=0}^{n} I_{l m}^{i} x^{i} .
\end{aligned}
$$

Han, CQG, 2016

Table 1. polynomial parameters for infinity fluxes.

	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}
$a=0.9$	$1.51 \mathrm{e}-7$	$-1.22 \mathrm{e}-5$	$4.40 \mathrm{e}-4$	$-9.43 \mathrm{e}-3$	$1.36 \mathrm{e}-1$	4.90 e 0	-5.27 e 0	-1.05 e 1	2.98 e 1	-4.34 e 1	3.99 e 1
$a=0.7$	$6.61 \mathrm{e}-7$	$-5.98 \mathrm{e}-5$	$2.41 \mathrm{e}-3$	$-5.69 \mathrm{e}-2$	$8.76 \mathrm{e}-1$	-2.90 e 0	5.22 e 1	-2.75 e 2	8.81 e 2	-1.64 e 3	1.44 e 3
$a=0.0$	$1.46 \mathrm{e}-6$	$-1.72 \mathrm{e}-4$	$9.08 \mathrm{e}-3$	$-2.83 \mathrm{e}-1$	5.76 e 0	-7.39 e 1	7.63 e 2	-5.02 e 3	2.21 e 4	-5.77 e 4	7.19 e 4
$a=-0.9$	$1.26 \mathrm{e}-6$	$-1.85 \mathrm{e}-4$	$1.22 \mathrm{e}-2$	$-4.78 \mathrm{e}-1$	1.22 e 1	-2.09 e 2	2.63 e 3	-2.21 e 4	1.25 e 5	-4.20 e 5	6.78 e 5

Table 2. polynomial parameters for horizon fluxes.

	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}	b_{9}	b_{10}
$a=0.9$	$-3.44 \mathrm{e}-9$	$2.93 \mathrm{e}-7$	$-1.09 \mathrm{e}-5$	$2.25 \mathrm{e}-4$	$-2.66 \mathrm{e}-3$	$1.34 \mathrm{e}-2$	$1.07 \mathrm{e}-1$	-3.19 e 0	8.84 e 0	-8.33 e 0	2.37 e 0
$a=0.7$	$8.88 \mathrm{e}-8$	$-7.97 \mathrm{e}-6$	$3.17 \mathrm{e}-4$	$-7.39 \mathrm{e}-3$	$1.11 \mathrm{e}-1$	-1.14 e 0	8.00 e 0	-3.89 e 1	1.17 e 2	-2.04 e 2	1.58 e 2
$a=0.0$	$4.84 \mathrm{e}-7$	$-5.70 \mathrm{e}-5$	$3.00 \mathrm{e}-3$	$-9.28 \mathrm{e}-2$	1.88 e 0	-2.59 e 1	2.48 e 2	-1.62 e 3	6.97 e 3	-1.79 e 4	2.11 e 4
$a=-0.9$	$5.30 \mathrm{e}-7$	$-7.76 \mathrm{e}-5$	$5.11 \mathrm{e}-3$	$-1.99 \mathrm{e}-1$	5.08 e 0	-8.90 e 1	1.08 e 3	-9.10 e 3	5.05 e 4	-1.69 e 5	2.63 e 5

Table 3. polynomial coefficients for waveform $(2,2)$ mode: real part.

	R_{22}^{0}	R_{22}^{1}	R_{22}^{2}	R_{22}^{3}	R_{22}^{4}	R_{22}^{5}	R_{22}^{6}	R_{22}^{7}	R_{22}^{8}	R_{22}^{9}	R_{22}^{10}
$a=0.9$	$4.00 \mathrm{e}-5$	$4.96 \mathrm{e}-1$	$-9.20 \mathrm{e}-1$	$-3.43 \mathrm{e}-1$	-6.23 e 0	1.73 e 2	-1.02 e 3	3.20 e 3	-6.14 e 3	6.78 e 3	-3.27 e 3
$a=0.7$	$2.88 \mathrm{e}-5$	$4.96 \mathrm{e}-1$	$-9.20 \mathrm{e}-1$	1.03 e 0	-1.98 e 1	2.75 e 2	-1.57 e 3	5.33 e 3	-1.18 e 4	1.54 e 4	-9.09 e 3
$a=0.0$	$1.78 \mathrm{e}-5$	$4.97 \mathrm{e}-1$	$-8.67 \mathrm{e}-1$	5.44 e 0	-6.22 e 1	6.73 e 2	-4.23 e 3	1.89 e 4	-5.58 e 4	9.83 e 4	-7.12 e 4
$a=-0.9$	$1.38 \mathrm{e}-5$	$4.97 \mathrm{e}-1$	$-7.79 \mathrm{e}-1$	1.17 e 1	-1.17 e 2	1.34 e 3	-9.37 e 3	4.84 e 4	-1.46 e 5	2.09 e 5	1.13 e 5

Our model: Fully calibrated version1

Our model: Fully calibrated version1

Figure 5. Orbital evolution of the EMRIs (mass ratio $1 / 1000$) for $a=0$; the right panel shows the details of the orbit evolution at the final time.

Han CQG 2016

Our Fully calibrated version1: shortcoming

- Each group of polynomials only works in one special case;
- For getting the polynomials, one firstly must generate some numerical reference data;
- Polynomials do not have physics inside.
- Inspiring us to use factorized forms in EOB frame

Version2: recalibrated waveforms in EOB frame

$$
\begin{aligned}
& \rho_{l m}= 1+a_{1} v^{2}+b_{1} q v^{3}+\left(a_{2}+b_{2} q^{2}\right) v^{4}+b_{3} q v^{5}+\left[b_{4} q^{2}+a_{3}+a_{4} \text { eulerlog }(m v)\right] v^{6} \\
& {\left[b_{5} q+b_{6} q^{3}\right] v^{7}+\left[b_{7} q^{2}+b_{8} q^{4}+a_{5}+a_{6} \operatorname{eulerlog}(m v)\right] v^{8}+\left(b_{9} q+b_{10} q^{3}\right) v^{9}+} \\
& {\left[a_{7}+a_{8} \text { eulerlog }(m v)\right] v^{10}+\left[a_{9}+a_{10} \text { eulerlog }(m v)\right] v^{12} \quad \text { for I }=\mathrm{m} } \\
& \rho_{l m}= 1+b_{1} q v+\left(a_{1}+b_{2} q^{2}\right) v^{2}+\left(b_{3} q+b_{4} q^{3}\right) v^{3}+\left(a_{2}+b_{5} q^{2}+b_{6} q^{4}\right) v^{4}+ \\
&\left(b_{7} q+b_{8} q^{3}+b_{9} q^{5}\right) v^{5}+\left[a_{3}+a_{4} \text { eulerlog }(m v)+b_{10} q^{2}+b_{11} q^{4}+b_{12} q^{6}\right] v^{6}+ \\
& {\left[b_{13} q+b_{14} \operatorname{eulerlog}(m v) q+b_{15} q^{3}+b_{16} q^{5}+b_{17} q^{7}\right] v^{7}+\left[a_{5}+a_{6} \text { eulerlog }(m v)\right] v^{8}+} \\
& {\left[a_{7}+a_{8} \operatorname{eulerlog}(m v)\right] v^{10}+\left[a_{9}+a_{10} \text { eulerlog }(m v)\right] v^{12} \quad \text { for I }=/ \mathrm{m} } \\
& a_{11}^{\text {Hor,S }}= p_{1} q+p_{2} q^{2}+p_{3} q^{3}+p_{4} q^{4}+p_{5} q^{5}+p_{6} q^{6} \quad \text { for horizon absorption } \\
& a_{12}^{\text {Hor,S }}=p_{7} q+p_{8} q^{2}+p_{9} q^{3}+p_{10} q^{4}+p_{11} q^{5}+p_{12} q^{6}+p_{13} q^{7}
\end{aligned}
$$

Version2: recalibrated waveforms in EOB frame We use a least square method to find the global coefficients with the highly accurate Teukolskybased data which $q=0.9 \sim 0,-0.3,-0.5,-0.7,-0.9$

	$l=2, m=2$	$l=3, m=3$	$l=4, m=4$	$l=5, m=5$	$l=6, m=6$	
a_{1}	$-1.023975805956 \mathrm{E}+00$	$-1.166721079966 \mathrm{E}+00$	$-1.2227931618 \mathrm{E}+00$	$-1.2487811477 \mathrm{E}+00$	$-1.2619660215 \mathrm{E}+00$	-1.
a_{2}	$-1.773785209399 \mathrm{E}+00$	$-1.632220902128 \mathrm{E}+00$	$-1.5488861713 \mathrm{E}+00$	$-1.5137494102 \mathrm{E}+00$	$-1.4927232619 \mathrm{E}+00$	-1.
a_{3}	$3.318171742361 \mathrm{E}+01$	$1.485007940230 \mathrm{E}+01$	$1.1208215801 \mathrm{E}+01$	$8.7424413748 \mathrm{E}+00$	$6.5654511682 \mathrm{E}+00$	4.
a_{4}	$3.953835298796 \mathrm{E}+01$	$1.245654119994 \mathrm{E}+01$	$1.2709894830 \mathrm{E}+01$	$1.1883585053 \mathrm{E}+01$	$1.1939038028 \mathrm{E}+01$	1.
a_{5}	$-1.104050524831 \mathrm{E}+03$	$-6.678847665787 \mathrm{E}+02$	$-8.6428660908 \mathrm{E}+02$	$-9.5407467730 \mathrm{E}+02$	$-1.0672751384 \mathrm{E}+03$	-1.
a_{6}	$1.765670955233 \mathrm{E}+03$	$6.364340267479 \mathrm{E}+02$	$6.4805577773 \mathrm{E}+02$	$6.1182473525 \mathrm{E}+02$	$6.1235129084 \mathrm{E}+02$	6.4
a_{7}	$-1.584521768582 \mathrm{E}+04$	$-7.018461656809 \mathrm{E}+03$	$-8.2330639578 \mathrm{E}+03$	$-8.5105354171 \mathrm{E}+03$	$-9.1262632809 \mathrm{E}+03$	-9.
a_{8}	$1.007746475744 \mathrm{E}+04$	$3.520695972919 \mathrm{E}+03$	$3.6160554839 \mathrm{E}+03$	$3.4023945061 \mathrm{E}+03$	$3.4000165921 \mathrm{E}+03$	3.
a_{9}	$-1.943757060254 \mathrm{E}+04$	$-7.516377182961 \mathrm{E}+03$	$-8.4638217440 \mathrm{E}+03$	$-8.4396976216 \mathrm{E}+03$	$-8.8310465543 \mathrm{E}+03$	-9.
a_{10}	$6.701134943008 \mathrm{E}+03$	$2.262034338117 \mathrm{E}+03$	$2.3482970193 \mathrm{E}+03$	$2.2049397140 \mathrm{E}+03$	$2.2024481099 \mathrm{E}+03$	$2 .$.
b_{1}	$-6.733755278411 \mathrm{E}-01$	$-6.696972546143 \mathrm{E}-01$	$-6.6915298811 \mathrm{E}-01$	$-6.6901906546 \mathrm{E}-01$	$-6.6904049613 \mathrm{E}-01$	-6
b_{2}	$5.843602324003 \mathrm{E}-01$	$5.360214944791 \mathrm{E}-01$	$5.2813489804 \mathrm{E}-01$	$5.2594458075 \mathrm{E}-01$	$5.2571830732 \mathrm{E}-01$	5.
b_{3}	$-1.662151538548 \mathrm{E}+00$	$-1.308471947237 \mathrm{E}+00$	$-1.2252358713 \mathrm{E}+00$	$-1.2090008750 \mathrm{E}+00$	$-1.2146809603 \mathrm{E}+00$	-1.
b_{4}	$-1.061146392648 \mathrm{E}+00$	$-4.975131465872 \mathrm{E}-01$	$-4.5878852649 \mathrm{E}-01$	$-4.6545217148 \mathrm{E}-01$	$-4.8516130249 \mathrm{E}-01$	-5
b_{5}	$3.827859278692 \mathrm{E}+00$	$2.543651584540 \mathrm{E}+00$	$2.4583522998 \mathrm{E}+00$	$2.4535277945 \mathrm{E}+00$	$2.4730693730 \mathrm{E}+00$	2.
b_{6}	$-7.756293634998 \mathrm{E}-01$	$-3.514346900192 \mathrm{E}-01$	$-1.8135025452 \mathrm{E}-01$	$-1.4988716272 \mathrm{E}-01$	$-1.4384902166 \mathrm{E}-01$	-1

Version2: recalibrated waveforms in EOB frame

TABLE III. Total coefficients for $m \neq l$

	$l=5, m=4$	$l=5, m=3$	$l=6, m=5$	$l=6, m=4$
a_{1}	$-1.2781593391 \mathrm{E}+00$	$-9.6137951691 \mathrm{E}-01$	$-1.2846696264 \mathrm{E}+00$	$-1.0236865411 \mathrm{E}+00$
a_{2}	$-9.7034478849 \mathrm{E}-01$	$-6.7312218658 \mathrm{E}-01$	$-1.0280853586 \mathrm{E}+00$	$-8.0181417330 \mathrm{E}-01$
a_{3}	$2.8215508168 \mathrm{E}+00$	$6.6046438604 \mathrm{E}+00$	$1.4723471598 \mathrm{E}+00$	$1.3317579430 \mathrm{E}+01$
a_{4}	$1.2611970259 \mathrm{E}+01$	$-2.3057664622 \mathrm{E}+01$	$1.2336196550 \mathrm{E}+01$	$-1.9494642667 \mathrm{E}+01$
a_{5}	$-5.2596249376 \mathrm{E}+02$	$8.0535017960 \mathrm{E}+02$	$-6.2959344624 \mathrm{E}+02$	$8.2565169087 \mathrm{E}+02$
a_{6}	$3.0038340199 \mathrm{E}+02$	$-7.0899298915 \mathrm{E}+02$	$3.3177604825 \mathrm{E}+02$	$-5.8059965421 \mathrm{E}+02$
a_{7}	$-1.7661904159 \mathrm{E}+03$	$6.8217825869 \mathrm{E}+03$	$-2.5543377525 \mathrm{E}+03$	$6.3637960489 \mathrm{E}+03$
a_{8}	$6.0774411335 \mathrm{E}+02$	$-3.2601890463 \mathrm{E}+03$	$8.8256123155 \mathrm{E}+02$	$-2.6727578200 \mathrm{E}+03$
a_{9}	$-2.4280639567 \mathrm{E}+02$	$5.8657539419 \mathrm{E}+03$	$-1.0359578359 \mathrm{E}+03$	$5.2005709295 \mathrm{E}+03$
a_{10}	$3.2316814336 \mathrm{E}+01$	$-1.7108913454 \mathrm{E}+03$	$2.3941084370 \mathrm{E}+02$	$-1.3988354619 \mathrm{E}+03$
b_{1}	$-2.4005464853 \mathrm{E}-01$	$8.6374961193 \mathrm{E}-06$	$-1.9451648765 \mathrm{E}-01$	$-9.2761151062 \mathrm{E}-06$
b_{2}	$-1.1607843889 \mathrm{E}-01$	$1.2299226986 \mathrm{E}-04$	$-9.5157480501 \mathrm{E}-02$	$2.0275436115 \mathrm{E}-04$
b_{3}	$3.2207333467 \mathrm{E}-01$	$-1.1811709880 \mathrm{E}+00$	$1.6169577622 \mathrm{E}-01$	$-1.0374290314 \mathrm{E}+00$
b_{4}	$-8.2537773600 \mathrm{E}-02$	$5.7012441031 \mathrm{E}-03$	$-6.6960649581 \mathrm{E}-02$	$5.2750953889 \mathrm{E}-03$
b_{5}	$3.3019097935 \mathrm{E}-01$	$5.8255283839 \mathrm{E}-01$	$3.7135374972 \mathrm{E}-01$	$5.2694468496 \mathrm{E}-01$
b_{6}	$-7.1149022817 \mathrm{E}-02$	$1.6974336944 \mathrm{E}-02$	$-5.8801917957 \mathrm{E}-02$	$1.3846828797 \mathrm{E}-02$

Version2: recalibrated waveforms in EOB frame

Cheng \& Han, 2017,submitted to PRD, arXiv:1706.03884

Version2: recalibrated waveforms in EOB frame

Including fluxes to horizon

Cheng \& Han, 2017,submitted to PRD, arXiv:1706.03884

Version2: recalibrated waveforms in EOB frame

Dephasing between recalibrated model and Teukolskybased waveforms

Version2: recalibrated waveforms in EOB frame

Evolution

$\mathrm{q}=0.9, \mathrm{M}=10 \wedge 5$ solar mass, $\mathrm{rO}=11 \mathrm{M}$

Version2: recalibrated waveforms in EOB frame

Waveforms

Conclusions

- The recalibrated formalism looks ugly but works
- Only works for EMRIs
- Published all the coefficients and will publish our codes;
- It is an effort to construct the waveform templates for LISA et. al. in the EOB formalisms.
- recalibrating mass-ratios dependent terms;

Thank you!

