Recalibrated waveforms for EMRIs in the EOB frame

HAN Wenbiao (韩文标)

@Shanghai Astronomical Observatory, CAS;上海天文台 The Era of Gravitational-wave Astronomy@Paris 2017.6.28

Outline

- Background and motivations;
- Numerical simulation for EMRIs;
- Effective-one-body formalism;
- Recalibrated waveforms in the EOB frame;
- Conclusions and prospect;

Extreme-mass-ratio inspirals: EMRIs

LISA

Chinese space-based projects: Taiji, Tianqin

eLISA pathfinder has gotten good results

Why studying EMRIs

- very long time scale
- SNR 20 up to z=0.7, dozens/year
- studying physics near horizon of SMBH
- testing gravitation theory
- Cosmology

Extreme Mass Ratio Inspirals

- SNR 20 up to $z \approx 0.7$ for $10^5 10^6$ M_{\odot}
- Dozens of events per year
- Mass, spin to 0.1% 0.01 %
- Quadrupole moment to < $0.001 M_{\odot}^{3}G^{2}/c^{4}$
- Do Black Holes have hair?
 - New objects in General Relativity
 - Boson Stars, Gravastars, non-Kerr solutions (e.g. Manko-Novikov)
 - Deviations from General Relativity
 - Chern-Simons, Scalar-Tensor, light scalar fields (axions) and black hole bomb instabilities
- Each has specific GW fingerprint! From Danzmann, 2017 May 25, Beijing

Challenge:

Firstly, we should have huge numbers of waveform templates of EMRIs with high accuracy. The role of waveform templates Matched filtering: find GWs from noise

Recognize the parameters of binaries

EMRIs : Calculation method of waveforms

Teukolsky equation

$$\begin{split} &\left[\frac{\left(r^{2}+a^{2}\right)^{2}}{\Delta}-a^{2}\sin^{2}\theta\right]\frac{\partial^{2}\Psi}{\partial t^{2}}+\frac{4Mar}{\Delta}\frac{\partial^{2}\Psi}{\partial t\partial\phi}+\left[\frac{a^{2}}{\Delta}-\frac{1}{\sin^{2}\theta}\right]\frac{\partial^{2}\Psi}{\partial\phi^{2}}-\\ &-\Delta^{-s}\frac{\partial}{\partial r}\left(\Delta^{s+1}\frac{\partial\Psi}{\partial r}\right)-\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Psi}{\partial\theta}\right)-2s\left[\frac{a\left(r-M\right)}{\Delta}+\frac{i\cos\theta}{\sin^{2}\theta}\right]\frac{\partial\Psi}{\partial\phi}-\\ &-2s\left[\frac{M\left(r^{2}-a^{2}\right)}{\Delta}-r-ia\cos\theta\right]\frac{\partial\Psi}{\partial t}+\left(s^{2}\cot^{2}\theta-s\right)\Psi=0\,. \end{split}$$

energy flux, waveform

$$\begin{split} \frac{dE}{dt} &= \lim_{r \to \infty} \left[\frac{1}{4\pi} \int_{\Omega} \left| \int_{-\infty}^{t} \psi d\tilde{t} \right|^{2} d\Omega \right], \\ \frac{dP_{i}}{dt} &= \lim_{r \to \infty} \left[\frac{1}{4\pi} \int_{\Omega} l_{i} \left| \int_{-\infty}^{t} \psi d\tilde{t} \right|^{2} d\Omega \right], \quad \psi \approx \frac{1}{2} \left(\frac{\partial^{2} h_{+}}{\partial t^{2}} - i \frac{\partial^{2} h_{\times}}{\partial t^{2}} \right) \\ \frac{dL}{dt} &= -\lim_{r \to \infty} \left\{ \frac{1}{4\pi} \operatorname{Re} \left[\int_{\Omega} \left(\partial_{\phi} \int_{-\infty}^{t} \psi d\tilde{t} \right) \left(\int_{-\infty}^{t} \int_{-\infty}^{t} \bar{\psi} d\tilde{t} d\hat{t} \right) d\Omega \right] \right\} \end{split}$$

Describe the orbit of small body

Effective-one-body (EOB) dynamics

Buonanno & Damour, 1999, 2000,

Two-body problem

one-body problem $M = m_1 + m_2$

 $\mu = m_1 m_2 / M$

 $m_1 \quad m_2$

EOB formalism: dynamics

$$\begin{split} \dot{r} &= \frac{\partial H_{\rm EOB}}{\partial p_r}, & H_{\rm EOB} = M\sqrt{1 + 2\nu(H_{\rm eff}/\mu - 1)} \\ \dot{\phi} &= \frac{\partial H_{\rm EOB}}{\partial p_{\phi}}, & H_{\rm eff} = H_{\rm NS} + H_{\rm S} - \frac{\mu}{2Mr^3}S_*^2 \\ H_{\rm NS} &= \beta^i p_i + \alpha\sqrt{\mu^2 + \gamma^{ij} p_i p_j}, \\ \dot{p}_r &= -\frac{\partial H_{\rm EOB}}{\partial r} + \mathcal{F}_{\phi} \frac{p_r}{p_{\phi}}, & H_{\rm S} = H_{\rm SO} + H_{\rm SS} \\ \dot{p}_{\phi} &= \overbrace{\mathcal{F}_{\phi}}^{\bullet} \text{ radiation reaction} \\ \alpha &= \frac{1}{\sqrt{-g^{tt}}}, & \hat{\mathcal{F}} = \frac{-1}{\nu\hat{\Omega}|r \times p|} \frac{dE}{dt}p, \\ \beta^i &= \frac{g^{ti}}{g^{tt}}, & \frac{dE}{dt} = \frac{\hat{\Omega}^2}{8\pi} \sum_{\ell=2}^8 \sum_{m=0}^\ell m^2 \left| \frac{\mathcal{R}}{M} \right| \\ \gamma^{ij} &= g^{ij} - \frac{g^{ti}g^{tj}}{g^{tt}}, \end{split}$$

$$\frac{dE}{dt} = \frac{\hat{\Omega}^2}{8\pi} \sum_{\ell=2}^8 \sum_{m=0}^\ell m^2 \left| \frac{\mathcal{R}}{M} h_{\ell m} \right|^2$$

EOB formalism: waveforms of circular orbits

$$h_{\ell m} = h_{\ell m}^{\text{insp-plunge}} \theta(t_{\text{match}}^{\ell m} - t) + h_{\ell m}^{\text{merger-RD}} \theta(t - t_{\text{match}}^{\ell m})$$

$$h_{\ell m}^{\text{insp-plunge}} = h_{\ell m}^{\text{F}} N_{\ell m}$$
$$h_{\ell m}^{\text{F}} = h_{\ell m}^{(N,\epsilon)} \hat{S}_{\text{eff}}^{(\epsilon)} T_{\ell m} e^{i\delta_{\ell m}} (\rho_{\ell m})^{\ell}$$

factorized waveform Pan et al., PRD 84, 124052 (2011)

$$h_{\ell m}^{\text{merger}-\text{RD}}(t) = \sum_{n=0}^{N-1} A_{\ell m n} e^{-i\sigma_{\ell m n}(t-t_{\text{match}}^{\ell m})}$$

$$\rho_{22} = 1 + \left(\frac{55\nu}{84} - \frac{43}{42}\right)\nu_{\Omega}^{2} + \left(\frac{19583\nu^{2}}{42336} - \frac{33025\nu}{21168} - \frac{20555}{10584}\right)\nu_{\Omega}^{4} + \left(\frac{10620745\nu^{3}}{39118464} - \frac{6292061\nu^{2}}{3259872} + \frac{41\pi^{2}\nu}{192} - \frac{48993925\nu}{9779616} - \frac{428 \operatorname{eulerlog}_{2}(\nu_{\Omega}^{2})}{105} + \frac{1556919113}{122245200}\right)\nu_{\Omega}^{6} + \left(\frac{9202 \operatorname{eulerlog}_{2}(\nu_{\Omega}^{2})}{2205} - \frac{387216563023}{160190110080}\right)\nu_{\Omega}^{8} + \left(\frac{439877 \operatorname{eulerlog}_{2}(\nu_{\Omega}^{2})}{55566} - \frac{16094530514677}{533967033600}\right)\nu_{\Omega}^{10}, \tag{B9a}$$

Accuracy of factorized PN waveform applying to EMRI

Accuracy requirement of EMRIs

- A typical EMRIs have M/μ cycles
- During the inspirals, for dephase less than 2pi, one asks

 $\Delta \dot{E}/\dot{E} < \mu/M$

- So for typical mass-ratio 10^5, the relative precision should be 10^-5.
- F-R PN waveforms break down even for circular orbits

Highly accurate and efficient waveforms

- Numerical simulations are inefficient;
- We try to work on semi-analytical models
- Yunes et al., 2011

$$\begin{split} \rho_{\text{Cal}}^{22} &= \rho^{22} + \left[a_{22}^{(9,1)} + b_{22}^{(9,1)} \text{ eulerlog}_2 v^2 \right] \,\bar{q} \, v^9 \\ &+ \left[a_{22}^{(12,0)} + b_{22}^{(12,0)} \text{ eulerlog}_2 v^2 \right] v^{12} \,, \\ \rho_{\text{Cal}}^{33} &= \rho^{33} + \left[a_{33}^{(8,2)} + b_{33}^{(8,2)} \text{ eulerlog}_3 v^2 \right] \, \bar{q}^2 \, v^8 \\ &+ \left[a_{33}^{(10,0)} + b_{33}^{(10,0)} \text{ eulerlog}_3 v^2 \right] v^{10} \,, \end{split}$$

Yunes' s results:

Yunes' s results:

$$\dot{E}^{\infty} = \sum_{i=0}^{n} a'_{i} x^{i}, \quad \dot{E}^{\mathrm{H}} = \sum_{i=0}^{n} b'_{i} x^{i},$$
$$\operatorname{Re}[H_{lm}] = \sum_{i=0}^{n} R'_{lm} x^{i}, \quad \operatorname{Im}[H_{lm}] = \sum_{i=0}^{n} I'_{lm} x^{i}.$$

Han, CQG, 2016

Table 1. polynomial parameters for infinity fluxes.

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
1.51e-7	-1.22e-5	4.40e-4	-9.43e-3	1.36e-1	4.90e0	-5.27e0	-1.05e1	2.98e1	-4.34e1	3.99e1
6.61e-7	-5.98e-5	2.41e-3	-5.69e-2	8.76e-1	-2.90e0	5.22e1	-2.75e2	8.81e2	-1.64e3	1.44e3
1.46e-6	-1.72e-4	9.08e-3	-2.83e-1	5.76e0	-7.39e1	7.63e2	-5.02e3	2.21e4	-5.77e4	7.19e4
1.26e-6	-1.85e-4	1.22e-2	-4.78e-1	1.22e1	-2.09e2	2.63e3	-2.21e4	1.25e5	-4.20e5	6.78e5
-	$\begin{array}{c} a_0 \\ \hline 1.51e-7 \\ \hline 6.61e-7 \\ \hline 1.46e-6 \\ \hline 1.26e-6 \end{array}$	$\begin{array}{ccc} a_0 & a_1 \\ \hline 1.51e-7 & -1.22e-5 \\ \hline 6.61e-7 & -5.98e-5 \\ \hline 1.46e-6 & -1.72e-4 \\ \hline 1.26e-6 & -1.85e-4 \end{array}$	$\begin{array}{c cccc} a_0 & a_1 & a_2 \\ \hline 1.51e-7 & -1.22e-5 & 4.40e-4 \\ \hline 6.61e-7 & -5.98e-5 & 2.41e-3 \\ \hline 1.46e-6 & -1.72e-4 & 9.08e-3 \\ \hline 1.26e-6 & -1.85e-4 & 1.22e-2 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

 Table 2. polynomial parameters for horizon fluxes.

	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}
a = 0.9	-3.44e-9	2.93e-7	-1.09e-5	2.25e-4	-2.66e-3	1.34e-2	1.07e-1	-3.19e0	8.84e0	-8.33e0	2.37e0
a = 0.7	8.88e-8	-7.97e-6	3.17e-4	-7.39e-3	1.11e-1	- 1.14e0	8.00e0	-3.89e1	1.17e2	-2.04e2	1.58e2
a = 0.0	4.84e-7	-5.70e-5	3.00e-3	-9.28e-2	1.88e0	-2.59e1	2.48e2	-1.62e3	6.97e3	-1.79e4	2.11e4
a = -0.9	5.30e-7	-7.76e-5	5.11e-3	-1.99e-1	5.08e0	-8.90e1	1.08e3	-9.10e3	5.05e4	-1.69e5	2.63e5

Table 3. polynomial coefficients for waveform (2,2) mode: real part.

	R_{22}^{0}	R_{22}^{1}	R_{22}^2	R_{22}^{3}	R_{22}^4	R_{22}^{5}	R_{22}^{6}	R_{22}^{7}	R_{22}^{8}	R_{22}^{9}	R_{22}^{10}
a = 0.9	4.00e-5	4.96e-1	-9.20e-1	-3.43e-1	-6.23e0	1.73e2	-1.02e3	3.20e3	-6.14e3	6.78e3	-3.27e3
a = 0.7	2.88e-5	4.96e-1	-9.20e-1	1.03e0	-1.98e1	2.75e2	-1.57e3	5.33e3	-1.18e4	1.54e4	-9.09e3
a = 0.0	1.78e-5	4.97e-1	-8.67e-1	5.44e0	-6.22e1	6.73e2	-4.23e3	1.89e4	-5.58e4	9.83e4	-7.12e4
a = -0.9	1.38e-5	4.97e-1	-7.79e-1	1.17e1	-1.17e2	1.34e3	-9.37e3	4.84e4	-1.46e5	2.09e5	1.13e5

Our model: Fully calibrated version1

Our model: Fully calibrated version1

Figure 5. Orbital evolution of the EMRIs (mass ratio 1/1000) for a = 0; the right panel shows the details of the orbit evolution at the final time.

Han CQG 2016

Our Fully calibrated version1: shortcoming

- Each group of polynomials only works in one special case;
- For getting the polynomials, one firstly must generate some numerical reference data;
- Polynomials do not have physics inside.
- Inspiring us to use factorized forms in EOB frame

$$\rho_{lm} = 1 + a_1 v^2 + b_1 q v^3 + (a_2 + b_2 q^2) v^4 + b_3 q v^5 + [b_4 q^2 + a_3 + a_4 \text{eulerlog}(mv)] v^6$$
$$[b_5 q + b_6 q^3] v^7 + [b_7 q^2 + b_8 q^4 + a_5 + a_6 \text{eulerlog}(mv)] v^8 + (b_9 q + b_{10} q^3) v^9 + [a_7 + a_8 \text{eulerlog}(mv)] v^{10} + [a_9 + a_{10} \text{eulerlog}(mv)] v^{12} \quad \text{for } \mathsf{I} = \mathsf{M}$$

$$\rho_{lm} = 1 + b_1 qv + (a_1 + b_2 q^2)v^2 + (b_3 q + b_4 q^3)v^3 + (a_2 + b_5 q^2 + b_6 q^4)v^4 + (b_7 q + b_8 q^3 + b_9 q^5)v^5 + [a_3 + a_4 \text{eulerlog}(mv) + b_{10} q^2 + b_{11} q^4 + b_{12} q^6]v^6 + [b_{13} q + b_{14} \text{eulerlog}(mv)q + b_{15} q^3 + b_{16} q^5 + b_{17} q^7]v^7 + [a_5 + a_6 \text{eulerlog}(mv)]v^8 + [a_7 + a_8 \text{eulerlog}(mv)]v^{10} + [a_9 + a_{10} \text{eulerlog}(mv)]v^{12} \quad \text{for } \mathbf{I} = /\mathbf{M}$$

$$a_{11}^{\text{Hor},\text{S}} = p_1 q + p_2 q^2 + p_3 q^3 + p_4 q^4 + p_5 q^5 + p_6 q^6 \text{ for horizon absorption}$$

$$a_{12}^{\text{Hor},\text{S}} = p_7 q + p_8 q^2 + p_9 q^3 + p_{10} q^4 + p_{11} q^5 + p_{12} q^6 + p_{13} q^7$$

Version2: recalibrated waveforms in EOB frame We use a least square method to find the global coefficients with the highly accurate Teukolskybased data which q=0.9~0,-0.3,-0.5,-0.7,-0.9

	l = 2, m = 2	l = 3, m = 3	l = 4, m = 4	l = 5, m = 5	l = 6, m = 6	
a_1	-1.023975805956E+00	-1.166721079966E + 00	-1.2227931618E+00	-1.2487811477E+00	-1.2619660215E+00	-1.
a_2	-1.773785209399E+00	-1.632220902128E+00	-1.5488861713E+00	-1.5137494102E+00	-1.4927232619E+00	-1.
a_3	3.318171742361E + 01	$1.485007940230\mathrm{E}{+}01$	1.1208215801E + 01	8.7424413748E + 00	6.5654511682E + 00	4.
a_4	$3.953835298796E{+}01$	$1.245654119994\mathrm{E}{+01}$	1.2709894830E + 01	1.1883585053E + 01	1.1939038028E + 01	1.:
a_5	-1.104050524831E + 03	$-6.678847665787\mathrm{E}{+02}$	-8.6428660908E+02	-9.5407467730E + 02	-1.0672751384E+03	-1.
a_6	$1.765670955233\mathrm{E}{+03}$	$6.364340267479\mathrm{E}{+}02$	6.4805577773E + 02	6.1182473525E + 02	6.1235129084E + 02	6.:
a_7	-1.584521768582E + 04	-7.018461656809E + 03	-8.2330639578E+03	-8.5105354171E + 03	-9.1262632809E+03	-9.
a_8	1.007746475744E + 04	$3.520695972919E{+}03$	3.6160554839E + 03	3.4023945061E + 03	3.4000165921E + 03	3.4
a_9	-1.943757060254E + 04	-7.516377182961E + 03	-8.4638217440E+03	-8.4396976216E + 03	-8.8310465543E+03	-9.
a_{10}	$6.701134943008E{+}03$	$2.262034338117\mathrm{E}{+03}$	2.3482970193E + 03	2.2049397140E + 03	2.2024481099E + 03	2.
b_1	-6.733755278411E-01	-6.696972546143E-01	-6.6915298811E-01	-6.6901906546E-01	-6.6904049613E-01	-6
b_2	5.843602324003E-01	5.360214944791E-01	5.2813489804E-01	5.2594458075E-01	5.2571830732E-01	5.
b_3	-1.662151538548E + 00	-1.308471947237E+00	-1.2252358713E+00	-1.2090008750E+00	-1.2146809603E+00	-1.
b_4	-1.061146392648E+00	-4.975131465872E-01	-4.5878852649E-01	-4.6545217148E-01	-4.8516130249E-01	-5
b_5	3.827859278692E + 00	$2.543651584540\mathrm{E}{+00}$	2.4583522998E + 00	2.4535277945E + 00	2.4730693730E + 00	2.4
b_6	-7.756293634998E-01	-3.514346900192E-01	-1.8135025452E-01	-1.4988716272E-01	-1.4384902166E-01	-1

TABLE III. Total coefficients for $m \neq l$

	l = 5, m = 4	l = 5, m = 3	l = 6, m = 5	l = 6, m = 4
a_1	-1.2781593391E+00	-9.6137951691E-01	-1.2846696264E+00	-1.0236865411E+00
a_2	-9.7034478849E-01	-6.7312218658E-01	-1.0280853586E+00	-8.0181417330E-01
a_3	2.8215508168E + 00	6.6046438604E + 00	1.4723471598E + 00	$1.3317579430E{+}01$
a_4	$1.2611970259E{+}01$	-2.3057664622E+01	$1.2336196550E{+}01$	-1.9494642667E + 01
a_5	-5.2596249376E+02	8.0535017960E + 02	-6.2959344624E+02	8.2565169087E + 02
a_6	3.0038340199E + 02	-7.0899298915E+02	3.3177604825E + 02	-5.8059965421E+02
a_7	-1.7661904159E + 03	6.8217825869E + 03	-2.5543377525E+03	$6.3637960489E{+}03$
a_8	6.0774411335E + 02	-3.2601890463E+03	8.8256123155E + 02	-2.6727578200E+03
a_9	-2.4280639567E+02	5.8657539419E + 03	-1.0359578359E+03	$5.2005709295E{+}03$
a_{10}	3.2316814336E + 01	-1.7108913454E+03	2.3941084370E + 02	-1.3988354619E+03
b_1	-2.4005464853E-01	8.6374961193E-06	-1.9451648765E-01	-9.2761151062E-06
b_2	-1.1607843889E-01	1.2299226986E-04	-9.5157480501E-02	2.0275436115 E-04
b_3	3.2207333467E-01	-1.1811709880E+00	1.6169577622 E-01	-1.0374290314E+00
b_4	-8.2537773600E-02	5.7012441031E-03	-6.6960649581E-02	5.2750953889E-03
b_5	3.3019097935E-01	5.8255283839E-01	3.7135374972E-01	5.2694468496E-01
b_6	-7.1149022817E-02	1.6974336944 E-02	-5.8801917957E-02	1.3846828797E-02

Cheng & Han, 2017, submitted to PRD, arXiv: 1706.03884

Including fluxes to horizon

Cheng & Han, 2017, submitted to PRD, arXiv: 1706.03884

Dephasing between recalibrated model and Teukolskybased waveforms

Evolution

q=0.9, M=10^5 solar mass, r0=11M

Waveforms

Conclusions

- The recalibrated formalism looks ugly but works
- Only works for EMRIs
- Published all the coefficients and will publish our codes;
- It is an effort to construct the waveform templates for LISA et. al. in the EOB formalisms.
- recalibrating mass-ratios dependent terms;

Thank you!