Secular evolution of stellar cluster@GC

1
The case of quasi-Keplerian systems

- Describe the secular evolution driven by finite $-N$ effects for a quasi-Keplerian system
- inhomogeneous
- dynamically degenerate
- stable
- self-gravitating
- discrete

How efficiently are BHs fed?

- Some references:

- Rauch, Tremaine (1996): Resonant relaxation
- Meritt et al. (2011): Schwarzschild barrier
- Bar-Or, Alexander (2014, 2016): η-formalism
- Sridhar, Touma (2016): Gilbert's method for Landau
- Fouvry, Pichon, Magorrian (2016): BBGKY approach

BBGKY Hierarchy

truncation @ 3 pt function
$\mathcal{R}=\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}\right)$

- BBGKY $-n=1$ equation

Actions+slow angle

$$
\frac{\partial \bar{F}}{\partial \tau}+\left[\bar{F}, \bar{\Phi}+\bar{\Phi}_{\mathrm{a}}\right]+\frac{1}{N} \int \mathrm{~d} \mathcal{R}_{2}\left[\overline{\mathcal{C}}\left(\mathcal{R}_{1}, \mathcal{R}_{2}\right), \bar{U}_{12}\right]_{(1)}=0
$$

- BBGKY $-n=2$ equation

$$
\begin{align*}
& \frac{1}{2} \frac{\partial C}{\partial \tau}+\left[\bar{C}\left(\boldsymbol{R}_{1}, \mathcal{R}_{2}\right), \bar{\Phi}\left(\boldsymbol{R}_{1}\right)+\bar{\Phi}_{\mathrm{a}}\left(\boldsymbol{R}_{1}\right)\right]_{(1)}+\frac{\left[\bar{F}\left(\boldsymbol{\mathcal { R }}_{1}\right) \bar{F}\left(\boldsymbol{\mathcal { R }}_{2}\right), \bar{U}_{12}\right]_{(1)}}{(2 \pi)^{d-k}} \\
& +\int \mathrm{d} \boldsymbol{\mathcal { R }}_{3} \bar{C}\left(\boldsymbol{\mathcal { R }}_{2}, \boldsymbol{\mathcal { R }}_{3}\right)\left[\bar{F}\left(\boldsymbol{\mathcal { R }}_{1}\right), \bar{U}_{13}\right]_{(1)}+(1 \leftrightarrow 2)=0 \tag{50}
\end{align*}
$$

using averaging over fast angle

$$
\bar{F}\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}\right)=\int \frac{\mathrm{d} \boldsymbol{\theta}^{\mathrm{d}}}{(2 \pi)^{d-k}} F\left(\boldsymbol{J}, \boldsymbol{\theta}^{\mathrm{s}}, \boldsymbol{\theta}^{\mathrm{d}}\right)
$$

Bogoliubov's synchronization hypothesis

5 Physical origin of
 Schwarzschild barrier
 One PN and I.5PN relativistic correction

7 Stochastic diffusion

Resonant relaxation drives the disc to
a configuration of lower angular momentum a configuration of lower angular momentum
@ fixed semi major axis $\quad J_{r}+L=$ const

$\delta \mathrm{N}$

6

Individual stochastic diffusion

- Self-consistent diffusion of the system as a whole
\Longrightarrow Anisotropic Balescu-Lenard equation

$$
\frac{\partial \bar{F}}{\partial \tau}=\frac{\partial}{\partial \boldsymbol{J}^{\mathrm{s}}} \cdot\left[\boldsymbol{A}(\boldsymbol{J}, \tau) \bar{F}(\boldsymbol{J}, \tau)+\boldsymbol{D}(\boldsymbol{J}, \tau) \cdot \frac{\partial \bar{F}}{\partial \boldsymbol{J}^{\mathrm{s}}}\right] .
$$

$\boldsymbol{A}(\bar{F})$ drift vector, $\boldsymbol{D}(\bar{F})$ diffusion tensor.

- Individual dynamics of a wire at position $\mathcal{J}(\tau)$
\Longrightarrow Stochastic Langevin equation - (Risken (1996))

$$
\begin{array}{|l|l|}
\hline \frac{\mathrm{d} \mathcal{J}}{\mathrm{~d} \tau}=\boldsymbol{h}(\mathcal{J}, \tau)+\boldsymbol{g}(\mathcal{J}, \tau) \cdot \boldsymbol{\Gamma}(\tau) \cdot & \text { "Ito" } \\
\text { Process }
\end{array}
$$

\boldsymbol{h} and \boldsymbol{g} vector and tensor, and $\boldsymbol{\Gamma}$ stochastic Langevin forces.
\Longrightarrow Dual equation, whose ensemble average gives back BL.

- In the Langevin's rewriting, particles are dressed orbits.
\Longrightarrow Huge gains in timesteps for integration.

Multi species?

