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INTRODUCTION
The direct-summation of N gravitational forces is a complex problem for which

there is no analytical solution. Dense stellar systems such as galactic nuclei and stellar
clusters are the loci of di↵erent interesting problems. In this work we present a new
GPU, direct-summation N�body integrator written from scratch and based on the
Hermite scheme. The first release of the code consists of the Hermite
integrator for a system of N bodies with softening. We find an ac-
celeration factor of about ⇡ 90 of the GPU version in a single node
as compared to the Serial-Single-CPU one. We additionally investigate the
impact of using softening in the dynamics of a dense cluster. We study how it a↵ects
the two body relaxation, as compared with another code, Nbody6, which uses KS
regularization, so as to understand the role of softening in the evolution of the system.
This initial release is the first step towards more and more realistic
scenarios, starting for a proper treatment for binary evolution, close
encounters and the role of a massive black hole.

SECTION 1
To numerically integrate the system of equations we adopt the widely known 4th-
order Hermite integrator (H4 henceforth) presented in ? (and see also ??), which is a
scheme based on a predictor-corrector scenario, in other words, the extrapolation and
interpolation of the equations of motion. An advantage of the choice for H4 is that we
can use the family of Aarseth’s codes as a test for our implementation.
Code structure: We present here the
structure of our new N�body code de-
veloped purely in C/C++, using
CUDA/MPI/OpenMP for paralleliza-
tion. One of the main concerns of Gravidy
is to treat our N�body code as a piece of
Software, being write using an “Iterative and
incremental development”, which is a soft-
ware development methodology similar to the
development APOD cycle ? (Assess, Parallelize,
Optimize and Deploy).

SECTION 2
We present in this section a number of tests
to measure the performance and the accu-
racy of Gravidy using di↵erent amount
of particles. The specs of the host com-
puter are summarized in table 1. (⌘ factor
for integration precision; ✏ for the soften-
ing; NBU; N�body Units)

CPU Intel(R) Xeon(R) CPU X5650 @ 2.67GHz (24 cores)
GPU Tesla M2050 @ 575 Mhz (448 cores).
RAM 24 GB
OS Scientific Linux release 6.4

Table 1: Details of the hardware and software en-
vironment of the host computer (Cluster node at
AEI).

Figure 1: Cumulative energy error up to t = 1 NBU
as a function of ⌘. All the plots represent Plummer
spheres with di↵erent amount of particles.

Figure 2: Clock time up to t = 1 NBU as a func-
tion of ⌘. All the plots represent Plummer spheres
with di↵erent amount of particles.

r = a(1 � e cos u) , (1)
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LISA prospective parameter estimation

PE Fisher Bayes

Inspiral ✓ ✓ [MLDC]

IMR ✓ [effective 
MRD, extrinsic] X [extrinsic]

6

30

30

30

30100

100

100
300

300

300

3001000

1000

1000
30

30

30

30

100

100

100

100

300

300
1000

M (M⊙)

z

 

 

104 106 108

5

10

15

20
total
f < fISCO

40

80

120

160

200

D
L
(G

p
c)

1:1

a.)

30

30

30100

100

100
300

300
1000

30

30
30

30

30

100

100

100
300

3001000

M (M⊙)

z

 

 

104 106 108

5

10

15

20
total
f < fISCO

40

80

120

160

200

D
L
(G

p
c)

20:1

b.)

FIG. 5: SNR contours for LISA with q = 1 (a.) and q = 1/20 (b.). The solid lines again correspond to the full waveform
SNR, while the dotted lines correspond to the SNR contribution from frequencies lower than the Schwarzschild ISCO frequency.
While the observable range of high-SNR mergers is reduced by a factor of several at 20:1 from what was seen in the 1:1 case,
sources are still easily detectable to large redshift over a similarly broad mass range.
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FIG. 6: Differences, δh, in 1:1 and rescaled 4:1 mass ratios. The inspiral waveform evolves out of phase on a timescale shown
clearly by the beats in δh (a.). The phase alignment persists for a slightly longer time during the merger (b.).

the waveform, in particular the evolution of the phase,
which may be critical when answering questions regard-
ing signal characterization. The “match” [19] is a useful
statistic for more detailed waveform comparisons, as it is
sensitive to small differences in waveform phase. For any
two waveforms, h1 and h2, the match M is defined using
the noise-weighted inner product (4):

M =
⟨h1|h2⟩

√

⟨h1|h1⟩⟨h2|h2⟩
. (7)

The match can be viewed as the fraction of the matched-

filter SNR that is recovered by using h2 as a filter to
search for h1, rather than using h1 itself (the optimal
filter). The left panel of Figure 8 shows a typical com-
parison for the 6:1 case, which should have the strongest
higher harmonics among the numerical simulations stud-
ied here. Also, we show a frequency-based comparison
for the same case in the right panel of Figure 8, where
the (2, +− 2) modes can be seen to dominate the signal
power until well into ringdown (indicated here by a ver-
tical dashed line). Nonetheless, it is still possible that a
sub-dominant mode may modulate the signal to a suf-
ficient degree to significantly diminish the recoverable

[McWilliams&al 2011]

Improvements in waveforms

Bayesian analyses are expensive: >10^6 likelihoods
Simplified low-f response used for inspiral signals

• IMR waveforms with spins (SEOBNRv4, PhenomD)

• IMR waveforms with precession (SEOBNRv3,  
PhenomP)

• ROM acceleration for SEOB (spins aligned) and NR 
(full 7d surrogate q<2)

• Higher modes so far only non-spinning 
(EOBNRv2HM ROM - TF2 ext.)

Objective: use fast IMR waveforms 
and fast FD LISA response to enable 

Bayesian analyses for prospective 
parameter estimation
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Earth

Sun
1 AU (150 million km)

19 – 23°
60°

2.5 million km

1 AU
Sun

±±

V∞ = 260

Frequency observables: y “ �⌫{⌫

Analogy with precessing signals

hI
`m “

ÿ

m1
D` ˚

m1mp↵,�, �q hP
`m1

• Approximating I-frame hI as rotation of 
P-frame non-precessing waveform hP

• Used in SEOB (TD) and PhenomP (FD) 

Extension through merger/ringdown 
given FD hP ?

FTrF ptqhpt ` dptqqs Ø h̃pfq, F ptq, dptq
Formal problem: modulated and delayed signal

Separation of timescales: 1/yr<<f
Low-f response: LIGO-like
Unsufficient for IMR and low-mass signals

TDI: combinations of delayed yslr

yslr “ 1

2

1

1 ´ k̂ ¨ nl

nl ¨
´
hpt ´ k̂ ¨ psq ´ hpt ´ k̂ ¨ prq

¯
¨ nl

• Orbital delay

• Change of orientation with time

• Armlength delays 
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A general view

The leading order transfer function

sptq “ F ptqhpt ` dptqq

Convolution with frequency-dependent kernel

Separation of timescales: if F, d have 
only frequencies <<f, local 

convolution - expand h(f-f ’) in f ’ 

Keeping linear term in the phase:

tf ” ´ 1

2⇡

d 

df

h̃pfq “ Apfqe´i pfq

G̃pf, f 1q “
ª
dt e2i⇡f

1te´2i⇡fdptqF ptq

s̃pfq “
ª
df 1 h̃pf ´ f 1qG̃pf ´ f 1, f 1q

Close to the SPA - but extends naturally through MRD

Input:

s̃pfq “ T pfqh̃pfq
T pfq “ Gpf, tf q
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FD LISA response
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One-arm transfer

Tslr “ i⇡fL

2

sinc

”
⇡fL

´
1 ´ ˆk ¨ nl

¯ı
exp

”
i⇡f

´
L ` ˆk ¨ pp1 ` p2q

¯ı
nl ¨ P ¨ nl
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M “ 106Md

M “ 102Md

TDI transfer [common f-dependence scaled out ]

Compact spline representation: 300 pts for h, 800 pts for low-f and high-f response
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Higher-order corrections

Amplitude:

f-dependence (delays):

Phase (quadratic term):

Separation of timescales

(e)LISA:

Precessing binaries: G “ F ptq

BtG „ 2⇡f0G

B2
tF „ ⌦2

prec „ 2PN

d2 

df2
„ T 2

RR „ ´2.5PN
f0 “ 1{yr “ 3.10´8Hz ! f

Leading order:

+ Merger-ringdown ?

Inspiral:

rederivation of [Klein&al 2014]

Improved delays:

14

where we recall that we defined tf ⌘ �1/(2⇡)d /df . This motivates the introduction of the delayed time function
td : t 7! t+ d(t), and of the reciprocal function t�1

d , and of a modified time-to-frequency correspondence tdf = t�1

d (tf ),
defined implicitly by

(t+ d(t)� tf )|t=td
f

= 0 . (50)

The above integral can then be formally computed as

s̃(f) = h̃(f)

Z
dt F (t)e�2i⇡fd(t)�(t+ d(t)� tf )

= h̃(f)F (tdf )
e�2i⇡fd(td

f

)

1 + ḋ(tdf )
(51)

For the standard LISA configuration, we have for the orbital delays the scaling dO ⇠ R/c ⇠ 500s, for the constel-
lation delays the scaling dc ⇠ L/c ⇠ 17s (with an additional dependence on angular factors). Since the motion of
the constellation is periodic with a period of one year and ⌦

0

= 2.10�7rad.s�1, we have ḋO ⇠ ⌦
0

R/c ⇠ 10�4 and
ḋc ⇠ ⌦

0

L/c ⇠ 3.10�6. The smallness of the dimensionless quantity ḋ ⌧ 1 (and of its subsequent derivatives) will
allow us to treat it perturbatively with a very good approximation, and shows also that the function td is univalued
and that there is no ambiguity in defining its reciprocal t�1

d .

By treating ḋ as a perturbation and keeping only first-order terms, we obtain for the delayed time reciprocal function

t�1

d (t) ' t� d(t)(1� ḋ(t)) ,

d(tdf ) ' d(tf )(1� ḋ(tf )) . (52)

Now, the most relevant correction in (51) comes from the phase factor at high frequencies, where the factors 2⇡fdO
and 2⇡fdc give a magnification by a factor of, respectively, 3.103 and 102 at 1Hz. Ignoring the other corrections, we
thus arrive at the approximate form for the transfer function

T (f) ' F (tf ) exp
h
�2i⇡fd(tf )(1� ḋ(tf ))

i
. (53)

Notice that this leading-order correction in the treatment of the delays a↵ects purely the phase of the signal.
Next, we consider the case where the quadratic phase correction is kept as well, as in Sec. IVB. Keeping as before

only the first-order terms in ḋ (and neglecting its higher derivatives), we can write

s̃(f) ' h̃(f)

Z
dt F (t)e�2i⇡fd(t)

Z
df 0 exp

⇥
2i⇡✏T 2

f f
02 + 2i⇡f 0(t+ d(t)� tf )

⇤

' h̃(f)
ei✏

⇡

4p
2⇡Tf

Z
d⌧

F (⌧ � d(⌧))

1 + ḋ(⌧)
e�2i⇡fd(⌧)(1� ˙d(⌧)) exp

"
� i✏

2

(⌧ � tf )2

T 2

f

#
, (54)

where we used a change of variable ⌧ = td(t). We see that the result can again be expressed as a Fresnel transform.
When considering amplitude corrections as well, as in (??), additional powers of f 0 can be translated as time

derivatives with respect to the variable ⌧ after performing the change of variables. Thus, we obtain our most general
result for an exact treatment of the quadratic term in the phase and for an improved treatment of the delays as:

T (f) =
+1X

k=0

1

(2i⇡)kk!

1

A

dkA

dfk
F✏

T
f


dk

d⌧k

✓
F (⌧ � d(⌧))

1 + ḋ(⌧)
e�2i⇡fd(⌧)(1� ˙d(⌧))

◆�
(tf ) . (55)

Each term in this series (in practice, only the first few will be relevant) can in turn be approximated by using the
stencil formula (48).

V. APPLICATION TO THE RESPONSE OF LISA-TYPE DETECTORS

A. The response model and TDI observables

In this Section, we expand Sec. ?? and detail more the model that we use for the response of a LISA-like detector,
together with the assumptions used and their limitations.

s̃pfq “ T pfqh̃pfq T pfq “ Gpf, tf q

T pfq “
ÿ 1

p!

ˆ
i

8⇡2

d2 

df2

˙
B2p
t Gpf, tf q

T pfq “
ÿ 1

p2i⇡qpp!
1

A

dpA

dfp
Bp
tGpf, tf q

T pfq “
ÿ 1

p2i⇡qpp!B
p
t Bp

fGpf, tf q

T 2
RR “ ´ 1

4⇡2

d2 

df2
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FIG. 4: Figures of merit of the approximation as defined in (35), for an equal-mass, non-spinning system and for total masses
of 107M�, 104M� and 102M�. The upper left panel corresponds to the orbital delay part of the response (??), and the
upper right panel corresponds to the LISA-centered response (57). The central line and interval are the mean and 1� standard
deviation of the logarithm of ✏ over 400 random values for the position in the sky, inclination and polarization. [change middle
mass to 3⇥ 104 - clarify mismatch between these ✏ and the actual size of corrections]

Case I), we simply send smoothly all three Euler angles to constants. In the second one (Case II), we send the opening
angle of the precession cone � to a constant, but we reproduce the behaviour describe letting the frame rotate around
the direction of the final total angular momentum Ĵ

final

with an angular velocity of ⌦
frame

= !
220

�!
210

. Fig. 9 shows
the Euler angles evolution for Cases I and II.

These simplifications comes with obvious limitations. Notably, they produce modulation functions F (t) that are
very smooth by construction. However, these two toy models will allow us to explore the separation of timescales in
the merger-ringdown part of the signal, and to highlight how the perturbative analysis can be challenged by the rapid
rotation of the radiation frame after merger, even in this idealized model.

In the absence of delays, we have a simple modulation of the signal by a function F (t), as given in (17) above. The
convolution with a frequency-dependent kernel (22) becomes a simple convolution in the Fourier-domain,

s̃(f) =

Z
df 0 h̃(f � f 0)F̃ (f 0) . (64)

It will be convenient to use the notation

F`m,`m0 ⌘ D`⇤
m0m(↵,�, �) (65)

which represents the modulation function corresponding to the contribution of each precessing-frame mode hP
`m mode

to the inertial-frame mode hI
`m0 (see Eq. (16)). One can also define Fourier-domain tranfer functions for each mode

contribution, according to

FT [F`m,`m0h] (f) ⌘ T`m,`m0(f)h̃(f) , (66)

Orbital delay Constellation delay

Quadratic phase term Amplitude term
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FD response: reconstruction errors

Orbital delay
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FIG. 5: Error in the transfer function for the orbital delay dO, for M = 107M�.

where FT stands for the Fourier transform. Fig. 10 gives the amplitude and phase of the transfer functions T
22,2m0 for

the two cases I and II. As expected, the di↵erence between the two toy models for the post-merger frame precession
is localized to the high frequency range. One can see a clear hierarchy in the amplitude of the inertial-frame modes
generated by the precessing-frame 22 mode. This hierarchy come from the Wigner geometric factors and is dependent
on the opening angle of the precession cone, or second Euler angle �, which in turn is dependent on the magnitude
of the misaligned spins in the system. Case II shows stronger amplitude features in the merger and ringdown.

B. Estimates for the magnitude of higher-order corrections

We investigate now the post-Newtonian order counting of the expansion (37) during the inspiralling phase of a
precessing binary, with modulation F as in (??). Using the notation O(n) = O(c�n), we have for quasi-cirular
inspirals that !̇ = O(5), corresponding to the radiation reaction e↵ect at the 2.5PN order. The mode mixing will be
induced by the rotation of the orbital angular momentum L around the total angular momentum J , with the angular
velocity for this precession ⌦ = O(2). The relevant scaling for the terms in the series (37), for the inspiral phase
where the SPA applies, is therefore

T 2p
f @2p

t F = O(�1) , (67)

meaning that the expansion becomes less well behaved for lower frequencies. The presence of a 1/p! gives a formal
sense to the expansion if the successive derivatives of F (t) are appropriately bounded, but one may have to keep a
large number of terms in the sum. The approximation that consists in taking the first term in the series, the LLP
approximation (??) which was in particular used for the PhenomP [] waveform model, gets worse the further away
from merger the signal is. We investigate further in Sec. ?? the validity of the treatment of precession used for
PhenomP.

Notice that, for the amplitude derivatives in (29b) and the higher order derivatives of the phase in (29a), the same
PN scaling arguments give however the opposite, more usual behaviour that the terms beyond the first one appear
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FIG. 6: Error in the transfer function for the basic observable y12, for M = 107M�.

as corrections becoming less and less important at lower frequencies. For instance, within the SPA we obtain

d3 

df3

1

F
@3

t F = O(6) , (68a)

1

A

dA

df

1

F
@tF = O(2) . (68b)

C. Direct convolution approach for the merger-ringdown phase

As will be shown by Fig. ?? below, although including higher-order amplitude corrections does capture some e↵ects
near merger, it is not su�ciently accurate and seems to be too sensitive to the details of the evolution of the modulation
F (t) in the merger region. Motivated by this shortcoming of the Taylor-like expansion approach, here we investigate
an alternative way of handling the merger-ringdown part of the signal.

Thanks to the separation of timescales between the precessional timescale and the orbital timescale, for su↵ciently
high frequencies the convolution (64) will have a support that will be entirely comprised in the high-frequency part of
the signal h̃(f), which is rather featureless and slowly varying as a function of f . Taking advantage of this smoothness,
we will adopt a trigonometric polynomial representation for h̃(f). For frequencies high enough that the support of
the convolution (64) does not extend beyond the range covered by this trigonometric representation, we will be able
to write the result directly as a Discrete Fourier Transform (DFT) with a limited number of samples.

We consider the high-frequency part of the signal above some frequency f
0

, up to some maximal frequency f
max

where the Fourier-domain amplitude of the signal has decayed to a negligible level. In our example of the equal-mass,
non-spinning waveform, we take [Mf

0

,Mf
max

] = [0.05, 0.16]. First, we eliminate a constant and a linear term in
the phase by choosing another frequency central to the high-frequency range we want to represent, which we take
to be Mfp = 0.1. We can think of fp as representing roughly the frequency at merger, and of the associated time

Constellation response

M “ 107Md
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FD response: reconstruction errors

Orbital delay

Constellation response

M “ 102Md
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FIG. 7: Transfer function and reconstruction error for the orbital delay dO, for M = 102M�.

tp ⌘ tf (fp) as an estimate of the time of merger. Note that the method should only be weakly sensitive to the precise
choice of fp and tp.

Additionaly, we taper the amplitude to arrive at a flat amplitude at f
0

, at the price of introducing a deviation from
the amplitude of the original signal. We localize this deviation to f  f

1

, with Mf
1

= 0.06 in our example, and in
general the trigonometric representation will be accurate to the original signal only for f � f

1

. This tapering is built
in practice as the discrete integral of a cosine window function. To ensure good continuity properties, we perform an
artificial symmetrization to a fictitious range f 2 [f

0

� (f
max

�f
0

), f
0

], by imposing symmetric amplitudes and phases
about f

0

. Defining �f ⌘ 2(f
max

� f
0

), we write

h̃
sym

(f) =

(
exp [�i ( (f

0

)� 2i⇡(f � f
0

)tp)] h̃(f) , for f 2 [f
0

, f
0

+�f/2]

h̃
sym

(2f
0

� f)⇤ , for f 2 [f
0

��f/2, f
0

]
(69)

Next, we build a a trigonometric polynomial representation of h̃
sym

. This construction is intimately related to the
DFT, but we recall it for completeness. For a periodic function f(x) defined on x 2 [x

0

, x
0

+�x], and represented by
N samples xj = x+j�x/N (with N chosen to satisfy the Nyquist criterion), we can build a trigonometric interpolant
P (x) as

P (x) =
+MX

k=�M

cke
2i⇡k

x�x0
�x (70)

that will satisfy the system P (xj) = f(xj) for j = 0, . . . , N � 1. Here we set M = N/2 (assuming N is even). The
coe�cients ck are related to the coe�cients of the inverse DFT of the series for f . If we set ! ⌘ e2i⇡/N and define

yk =
1

N

N�1X

j=0

f(xj)!
jk , (71)
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FIG. 8: Transfer function and reconstruction error for the basic observable y12, for M = 102M�.

FIG. 9: Evolution of Euler angles (↵,�, �) for our two toy models. Dashed lines represent Case I and solid lines Case II. The
vertical line indicates the time of merger. In the left panel the dashed black lines indicate the enforced asymptotic behaviour
in Case II, where the frame rotates with constant angular velocity !220�!210. In the right panel, � is asymptotically constant.

which is the expression of the inverse DFT in our sign convention (??), the coe�cients ck are given by

ck = yk for k = 0, . . . ,M � 1 ,

ck = yk+N for k = �M + 1, . . . ,�1 ,

cM = c�M =
yM
2

, (72)

where the condition cM = c�M is an arbitrary condition enforced to match the number of degrees of freedom. Fig ??
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Bayesian inference implementation

Accelerated no-noise overlaps

1¥ 10-5 2¥ 10-5 5¥ 10-5 1¥ 10-4 2¥ 10-4 5¥ 10-4

-4¥ 108

-2¥ 108

0

2¥ 108

4¥ 108

f HHzL

Implementation

• EOBNRv2HM waveforms (ROM) (non-
spinning, 22,21,33,44,55 modes)

• Accelerated overlaps for amplitude/phase 

• Sampler: MultiNEST, PTMCMC

• 0-noise, single signal

Overlaps: oscillatory integrands

ph1|h2q “ 4Re

ª
df

h̃1pfqh̃˚
2 pfq

Snpfq

ª fi`1

fi

P pfqeiraf`bf2s
ª fi`1

fi

eiraf`bf2s

•  Sparse grid: Amplitude/phase and response

• 1D Spline representation 300-800 pts

• Cost increases when including HM

Likelihood cost
Single mode h22: 2-10ms
5 modes hlm: 30-100ms

Number of samples
M “ 102 : 15 ´ 20.106

M “ 106 : 40.106
a
SNR{200
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LISA Bayesian inference example: high-mass

M “ 106Md
z “ 4

SNR “ 760

[See J. Baker’s poster]
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LISA Bayesian inference example: intermediate-mass

M “ 104Md
z “ 4

SNR “ 21

[See J. Baker’s poster]
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LISA Bayesian inference example: low-mass

M “ 102Md
z “ 0.15

SNR “ 12

[See J. Baker’s poster]
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Precessing modulations in Fourier domain

Frame trajectory

Pre- and post-merger frame

PN

• PN dynamics:

• Extracting frame from the waveform (IMR)
     [O’Shaughnessy&al 2011]

•  Approximate behaviour post-merger:
q “ 3

�1 “ p0.5, 0, 0q
�2 “ 0

[O’Shaughnessy&al 2012]

[SXS catalog]

hI
`m “

ÿ

m1
D` ˚

m1mp↵,�, �q hP
`m1

[Smoothness ?]

I

Zframe “ L̂

⌦frame „ !QNM
220 ´ !QNM

210
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Relation to previous work

SPA/SUA Fourier domain approach

tf : !ptf q “ ⇡f tf “ ´ 1

2⇡

d 

df
(SPA) (IMR)

Tf “ 1a
2 9!ptf q Rad. Reac. (SUA) (IMR)T 2

f “ 1

4⇡2

ˇ̌
ˇ̌d

2 

df2

ˇ̌
ˇ̌

s̃pfq “ h̃pfq
ÿ p´iqp

2pp!
T 2p
f B2p

t F (SUA) s̃pfq “ h̃pfq
ÿ p´iqp

2pp!
T 2p
f B2p

t F
Taylor FD
Quad. phase

s̃pfq “ h̃pfq
ÿ

akF ptf ˘ kTf q (Resum.)

•  Higher-order amplitude corrections

•  Local convolution approach for post-merger
dpA{dfp

s̃pfq “ ˜hpfq
ª
dt exp

«
´ i

2

ˆ
t ´ tf
Tf

˙2
�
F ptq

•  Leading order (different MR) [SpinTaylorF2, PhenomP]

•  Quadratic phase (SUA) [Klein&al 2014]
Previous works:

New corrections:
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Summary

• Bayesian parameter estimation using full IMR signals for the full mass range

• Full Fourier-domain response of the instrument using t(f) correspondence

• Higher-order corrections in the response available

• Including (non-spinning) merger and higher modes: EOBNRv2HM ROM waveforms

• Implementation using accelerated no-noise overlaps: few 10s of ms/likelihood

• Analogy of formalism with FD precession

• Still preliminary - See J. Baker’s poster for more results

Outlook

• Including spins (SEOBNRv4ROM, PhenomD/P)

• Including eccentricity

• Joint LIGO/LISA parameter estimation

• Parameter estimation as a function of time: accumulation of the signal

• Cosmology with LISA: standard sirens (EM or pure GW)

• Investigate superposition of signals

• Testing GR at high SNR / with multiband GW observations

LISA prospective parameter estimation
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Precession: magnitude of corrections
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22 Ñ hI

21

Case I

Example: q “ 3, �1 “ p´0.3, 0.5, 0.7q, �2 “ p0.3,´0.2,´0.5q

Case II
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Precession: errors - case I

����� ����� ����� �����

���

���

���

���

���

��

Conv.

Ψ:2 A:2

Ψ:0 A:0

FFT

����� ����� ����� �����

-���

-���

-���

���

���

���

���

��

Conv.

Ψ:2 A:2

Ψ:0 A:0

FFT

����� ����� ����� �����

���

���

���

���

���

���

���

���

��

Conv.

Ψ:2 A:2

Ψ:0 A:0

FFT

����� ����� ����� �����

-����

-����

����

����

����

��

Conv.

Ψ:2 A:2

Ψ:0 A:0

FFT

hP
22 Ñ hI

22

hP
22 Ñ hI

21

Amplitude relative to h22P Phase difference



      Sylvain Marsat             ————              TEGRAW,  IAP             ————            2016-06-27

Precession: errors - case II
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Precession: mismatches
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Case I Case II

◆ “ ⇡{2

• possible building block for models of precessing signals

• robustness across parameter space ?





Example: sky position degeneracies

SNR 20

Parameters:
(artificially distant)
m1 “ 1.5 ˆ 106Md
m2 “ 0.5 ˆ 106Md
◆ “ ⇡{3

DL “ 2036Gpc (SNR 20)

DL “ 203.6Gpc (SNR 200)



Example: sky position degeneracies

Parameters:
(artificially distant)

SNR 200

m1 “ 1.5 ˆ 106Md
m2 “ 0.5 ˆ 106Md
◆ “ ⇡{3

DL “ 2036Gpc (SNR 20)

DL “ 203.6Gpc (SNR 200)
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TD comparison to 2nd peak

FD comparison to 2nd peak

t (s)t (s)t (s)

f (Hz)f (Hz)

Amplitude Phase



FD transfer functions for different modes
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Tf “
d

1
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FIG. 4: Figures of merit of the approximation as defined in (35), for an equal-mass, non-spinning system and for total masses
of 107M�, 104M� and 102M�. The upper left panel corresponds to the orbital delay part of the response (??), and the
upper right panel corresponds to the LISA-centered response (57). The central line and interval are the mean and 1� standard
deviation of the logarithm of ✏ over 400 random values for the position in the sky, inclination and polarization. [change middle
mass to 3⇥ 104 - clarify mismatch between these ✏ and the actual size of corrections]

Case I), we simply send smoothly all three Euler angles to constants. In the second one (Case II), we send the opening
angle of the precession cone � to a constant, but we reproduce the behaviour describe letting the frame rotate around
the direction of the final total angular momentum Ĵ

final

with an angular velocity of ⌦
frame

= !
220

�!
210

. Fig. 9 shows
the Euler angles evolution for Cases I and II.

These simplifications comes with obvious limitations. Notably, they produce modulation functions F (t) that are
very smooth by construction. However, these two toy models will allow us to explore the separation of timescales in
the merger-ringdown part of the signal, and to highlight how the perturbative analysis can be challenged by the rapid
rotation of the radiation frame after merger, even in this idealized model.

In the absence of delays, we have a simple modulation of the signal by a function F (t), as given in (17) above. The
convolution with a frequency-dependent kernel (22) becomes a simple convolution in the Fourier-domain,

s̃(f) =

Z
df 0 h̃(f � f 0)F̃ (f 0) . (64)

It will be convenient to use the notation

F`m,`m0 ⌘ D`⇤
m0m(↵,�, �) (65)

which represents the modulation function corresponding to the contribution of each precessing-frame mode hP
`m mode

to the inertial-frame mode hI
`m0 (see Eq. (16)). One can also define Fourier-domain tranfer functions for each mode

contribution, according to

FT [F`m,`m0h] (f) ⌘ T`m,`m0(f)h̃(f) , (66)
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FIG. 5: Error in the transfer function for the orbital delay dO, for M = 107M�.

where FT stands for the Fourier transform. Fig. 10 gives the amplitude and phase of the transfer functions T
22,2m0 for

the two cases I and II. As expected, the di↵erence between the two toy models for the post-merger frame precession
is localized to the high frequency range. One can see a clear hierarchy in the amplitude of the inertial-frame modes
generated by the precessing-frame 22 mode. This hierarchy come from the Wigner geometric factors and is dependent
on the opening angle of the precession cone, or second Euler angle �, which in turn is dependent on the magnitude
of the misaligned spins in the system. Case II shows stronger amplitude features in the merger and ringdown.

B. Estimates for the magnitude of higher-order corrections

We investigate now the post-Newtonian order counting of the expansion (37) during the inspiralling phase of a
precessing binary, with modulation F as in (??). Using the notation O(n) = O(c�n), we have for quasi-cirular
inspirals that !̇ = O(5), corresponding to the radiation reaction e↵ect at the 2.5PN order. The mode mixing will be
induced by the rotation of the orbital angular momentum L around the total angular momentum J , with the angular
velocity for this precession ⌦ = O(2). The relevant scaling for the terms in the series (37), for the inspiral phase
where the SPA applies, is therefore

T 2p
f @2p

t F = O(�1) , (67)

meaning that the expansion becomes less well behaved for lower frequencies. The presence of a 1/p! gives a formal
sense to the expansion if the successive derivatives of F (t) are appropriately bounded, but one may have to keep a
large number of terms in the sum. The approximation that consists in taking the first term in the series, the LLP
approximation (??) which was in particular used for the PhenomP [] waveform model, gets worse the further away
from merger the signal is. We investigate further in Sec. ?? the validity of the treatment of precession used for
PhenomP.

Notice that, for the amplitude derivatives in (29b) and the higher order derivatives of the phase in (29a), the same
PN scaling arguments give however the opposite, more usual behaviour that the terms beyond the first one appear
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FIG. 7: Transfer function and reconstruction error for the orbital delay dO, for M = 102M�.

tp ⌘ tf (fp) as an estimate of the time of merger. Note that the method should only be weakly sensitive to the precise
choice of fp and tp.

Additionaly, we taper the amplitude to arrive at a flat amplitude at f
0

, at the price of introducing a deviation from
the amplitude of the original signal. We localize this deviation to f  f

1

, with Mf
1

= 0.06 in our example, and in
general the trigonometric representation will be accurate to the original signal only for f � f

1

. This tapering is built
in practice as the discrete integral of a cosine window function. To ensure good continuity properties, we perform an
artificial symmetrization to a fictitious range f 2 [f

0

� (f
max

�f
0

), f
0

], by imposing symmetric amplitudes and phases
about f

0

. Defining �f ⌘ 2(f
max

� f
0

), we write

h̃
sym

(f) =

(
exp [�i ( (f

0

)� 2i⇡(f � f
0

)tp)] h̃(f) , for f 2 [f
0

, f
0

+�f/2]

h̃
sym

(2f
0

� f)⇤ , for f 2 [f
0

��f/2, f
0

]
(69)

Next, we build a a trigonometric polynomial representation of h̃
sym

. This construction is intimately related to the
DFT, but we recall it for completeness. For a periodic function f(x) defined on x 2 [x

0

, x
0

+�x], and represented by
N samples xj = x+j�x/N (with N chosen to satisfy the Nyquist criterion), we can build a trigonometric interpolant
P (x) as

P (x) =
+MX

k=�M

cke
2i⇡k

x�x0
�x (70)

that will satisfy the system P (xj) = f(xj) for j = 0, . . . , N � 1. Here we set M = N/2 (assuming N is even). The
coe�cients ck are related to the coe�cients of the inverse DFT of the series for f . If we set ! ⌘ e2i⇡/N and define

yk =
1

N

N�1X

j=0

f(xj)!
jk , (71)
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FIG. 6: Error in the transfer function for the basic observable y12, for M = 107M�.

as corrections becoming less and less important at lower frequencies. For instance, within the SPA we obtain

d3 

df3

1

F
@3

t F = O(6) , (68a)

1

A

dA

df

1

F
@tF = O(2) . (68b)

C. Direct convolution approach for the merger-ringdown phase

As will be shown by Fig. ?? below, although including higher-order amplitude corrections does capture some e↵ects
near merger, it is not su�ciently accurate and seems to be too sensitive to the details of the evolution of the modulation
F (t) in the merger region. Motivated by this shortcoming of the Taylor-like expansion approach, here we investigate
an alternative way of handling the merger-ringdown part of the signal.

Thanks to the separation of timescales between the precessional timescale and the orbital timescale, for su↵ciently
high frequencies the convolution (64) will have a support that will be entirely comprised in the high-frequency part of
the signal h̃(f), which is rather featureless and slowly varying as a function of f . Taking advantage of this smoothness,
we will adopt a trigonometric polynomial representation for h̃(f). For frequencies high enough that the support of
the convolution (64) does not extend beyond the range covered by this trigonometric representation, we will be able
to write the result directly as a Discrete Fourier Transform (DFT) with a limited number of samples.

We consider the high-frequency part of the signal above some frequency f
0

, up to some maximal frequency f
max

where the Fourier-domain amplitude of the signal has decayed to a negligible level. In our example of the equal-mass,
non-spinning waveform, we take [Mf

0

,Mf
max

] = [0.05, 0.16]. First, we eliminate a constant and a linear term in
the phase by choosing another frequency central to the high-frequency range we want to represent, which we take
to be Mfp = 0.1. We can think of fp as representing roughly the frequency at merger, and of the associated time
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FIG. 8: Transfer function and reconstruction error for the basic observable y12, for M = 102M�.

FIG. 9: Evolution of Euler angles (↵,�, �) for our two toy models. Dashed lines represent Case I and solid lines Case II. The
vertical line indicates the time of merger. In the left panel the dashed black lines indicate the enforced asymptotic behaviour
in Case II, where the frame rotates with constant angular velocity !220�!210. In the right panel, � is asymptotically constant.

which is the expression of the inverse DFT in our sign convention (??), the coe�cients ck are given by

ck = yk for k = 0, . . . ,M � 1 ,

ck = yk+N for k = �M + 1, . . . ,�1 ,

cM = c�M =
yM
2

, (72)

where the condition cM = c�M is an arbitrary condition enforced to match the number of degrees of freedom. Fig ??
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