Fourier-domain response and Bayesian parameter estimation for LISA

Sylvain Marsat (AEI Potsdam)

in collaboration with J. Baker (NASA GSFC), P. Graff (APL)

LISA BBH targets

[LISA L3 proposal]

How accurately will LISA measure parameters of BBH coalescences across parameter space?

MR1.1 Galactic Binaries
MR2.1 Light, seed black holes at high redshift
MR2.2 Blackhole growth over cosmic history
MR2.3a Mergers of Milky-way type galaxies
MR2.4a Detection of Intermediate Mass Black Holes MR2.4b High mass ratio Intermediate Mass Black Holes
MR3.1 EMRIs around massive black holes
MR4.1 LIGO-type black holes
MR5.1 Tests of GR with high SNR ring-down signals MR7.1 Astrophysical stochastic background
MR7.2 Cosmological stochastic background

LISA BBH parameter estimation

LISA prospective parameter estimation

PE	Fisher	Bayes
Inspiral	\checkmark	\checkmark [MLDC]
IMR	\checkmark [effective MRD, extrinsic]	X [extrinsic]

[McWilliams\&al 201I]

Bayesian analyses are expensive: $>10^{\wedge} 6$ likelihoods Simplified low-f response used for inspiral signals

Improvements in waveforms

- IMR waveforms with spins (SEOBNRv4, PhenomD)
- IMR waveforms with precession (SEOBNRv3,

Objective: use fast IMR waveforms and fast FD LISA response to enable Bayesian analyses for prospective parameter estimation PhenomP)

- ROM acceleration for SEOB (spins aligned) and NR (full 7d surrogate $q<2$)
- Higher modes so far only non-spinning (EOBNRv2HM ROM - TF2 ext.)

LISA instrument response

Frequency observables: $y=\Delta \nu / \nu$
$y_{s l r}=\frac{1}{2} \frac{1}{1-\hat{k} \cdot n_{l}} n_{l} \cdot\left(h\left(t-\hat{k} \cdot p_{s}\right)-h\left(t-\hat{k} \cdot p_{r}\right)\right) \cdot n_{l}$

TDI: combinations of delayed $y_{s l r}$

- Orbital delay

Formal problem: modulated and delayed signal
$\mathrm{FT}[F(t) h(t+d(t))] \leftrightarrow \tilde{h}(f), F(t), d(t)$
Separation of timescales: $\mathrm{I} / \mathrm{yr} \ll \mathrm{f}$

- Change of orientation with time
- Armlength delays

Low-f response: LIGO-like
Unsufficient for IMR and low-mass signals

Analogy with precessing signals

Extension through merger/ringdown given FD hP ?

- Approximating l-frame hl as rotation of
P-frame non-precessing waveform hP
- Used in SEOB (TD) and PhenomP (FD)

$$
h_{\ell m}^{\mathrm{I}}=\sum_{m^{\prime}} D_{m^{\prime} m}^{\ell *}(\alpha, \beta, \gamma) h_{\ell m^{\prime}}^{\mathrm{P}}
$$

FD modulations and delays: formalism

$$
\text { A general view } \quad \text { Input: } \tilde{h}(f)=A(f) e^{-i \Psi(f)}
$$

$$
\begin{aligned}
s(t) & =F(t) h(t+d(t)) \\
\tilde{s}(f) & =\int d f^{\prime} \tilde{h}\left(f-f^{\prime}\right) \tilde{G}\left(f-f^{\prime}, f^{\prime}\right) \longrightarrow \\
\tilde{G}\left(f, f^{\prime}\right) & =\int d t e^{2 i \pi f^{\prime} t} e^{-2 i \pi f d(t)} F(t)
\end{aligned}
$$

Separation of timescales: if F, d have only frequencies <<f, local convolution - expand $h\left(f-f^{\prime}\right)$ in f^{\prime}

Convolution with frequency-dependent kernel
The leading order transfer function
Keeping linear term in the phase:

$$
t_{f} \equiv-\frac{1}{2 \pi} \frac{\mathrm{~d} \Psi}{\mathrm{~d} f}
$$

$$
\begin{aligned}
\tilde{s}(f) & =\mathcal{T}(f) \tilde{h}(f) \\
\mathcal{T}(f) & =G\left(f, t_{f}\right)
\end{aligned}
$$

Close to the SPA - but extends naturally through MRD

FD LISA response

One-arm transfer

$$
\mathcal{T}_{s l r}=\frac{i \pi f L}{2} \operatorname{sinc}\left[\pi f L\left(1-\hat{k} \cdot n_{l}\right)\right] \exp \left[i \pi f\left(L+\hat{k} \cdot\left(p_{1}+p_{2}\right)\right)\right] n_{l} \cdot P \cdot n_{l}
$$

TDI transfer

[common f-dependence scaled out]
$\left(\mathrm{f} / f_{*}\right) T_{A}$

$\left.{ }_{(f / f} /\right)_{\mathcal{F}_{E}}$

${ }_{\left(f / f_{N}\right) \mathcal{T}_{T}}$

Compact spline representation: 300 pts for h, 800 pts for low-f and high-f response

FD response: figures of merit of approximation

Higher-order corrections

$$
\tilde{s}(f)=\mathcal{T}(f) \tilde{h}(f) \quad \text { Leading order: } \mathcal{T}(f)=G\left(f, t_{f}\right)
$$

Phase (quadratic term): $\mathcal{T}(f)=\sum \frac{1}{p!}\left(\frac{i}{8 \pi^{2}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{~d} f^{2}}\right) \partial_{t}^{2 p} G\left(f, t_{f}\right) \rightarrow T_{\mathrm{RR}}^{2}=-\frac{1}{4 \pi^{2}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{~d} f^{2}}$
rederivation of [Klein\&al 2014]
$\begin{aligned} \text { Amplitude: } & \mathcal{T}(f)=\sum \frac{1}{(2 i \pi)^{p} p!} \frac{1}{A} \frac{\mathrm{~d}^{p} A}{\mathrm{~d} f^{p}} \partial_{t}^{p} G\left(f, t_{f}\right) \\ \text { f-dependence (delays): } & \mathcal{T}(f)=\sum \frac{1}{(2 i \pi)^{p} p!} \partial_{t}^{p} \partial_{f}^{p} G\left(f, t_{f}\right) \\ \text { Improved delays: } & \mathcal{T}(f) \simeq F\left(t_{f}\right) \exp \left[-2 i \pi f d\left(t_{f}\right)\left(1-\dot{d}\left(t_{f}\right)\right)\right]\end{aligned}$

Separation of timescales
(e)LISA:

$$
\begin{gathered}
\partial_{t} G \sim 2 \pi f_{0} G \\
f_{0}=1 / \mathrm{yr}=3.10^{-8} \mathrm{~Hz} \ll f
\end{gathered}
$$

Precessing binaries: $G=F(t)$

$$
\text { Inspiral: } \partial_{t}^{2} F \sim \Omega_{\text {prec }}^{2} \sim 2 \mathrm{PN}
$$

$$
\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} f^{2}} \sim T_{\mathrm{RR}}^{2} \sim-2.5 \mathrm{PN}
$$

+ Merger-ringdown?

FD response: figures of merit of approximation

FD response: reconstruction errors

$M=10^{7} M_{\odot} \quad$ Orbital delay

Constellation response

FD response: reconstruction errors

Bayesian inference implementation

Accelerated no-noise overlaps

Overlaps: oscillatory integrands

- Sparse grid: Amplitude/phase and response
- ID Spline representation 300-800 pts
- Cost increases when including HM

$$
\left(h_{1} \mid h_{2}\right)=4 \operatorname{Re} \int d f \frac{\tilde{h}_{1}(f) \tilde{h}_{2}^{*}(f)}{S_{n}(f)} \longrightarrow \int_{f_{i}}^{f_{i+1}} P(f) e^{i\left[a f+b f^{2}\right]} \longrightarrow \int_{f_{i}}^{f_{i+1}} e^{i\left[a f+b f^{2}\right]}
$$

Implementation
Likelihood cost Single mode h22: 2-10ms 5 modes hlm: $30-100 \mathrm{~ms}$

- EOBNRv2HM waveforms (ROM) (nonspinning, 22,2I,33,44,55 modes)
- Accelerated overlaps for amplitude/phase
- Sampler: MultiNEST, PTMCMC
- 0-noise, single signal

Number of samples $M=10^{2}: 15-20.10^{6}$
$M=10^{6}: 40.10^{6} \sqrt{\mathrm{SNR} / 200}$

LISA Bayesian inference example: high-mass

[See J. Baker's poster]

$$
\begin{aligned}
M & =10^{6} M_{\odot} \\
z & =4 \\
\mathrm{SNR} & =760
\end{aligned}
$$

LISA Bayesian inference example: intermediate-mass

[See J. Baker's poster]

$$
\begin{aligned}
M & =10^{4} M_{\odot} \\
z & =4 \\
\mathrm{SNR} & =21
\end{aligned}
$$

LISA Bayesian inference example: low-mass

Precessing modulations in Fourier domain

Frame trajectory

$$
h_{\ell m}^{\mathrm{I}}=\sum_{m^{\prime}} D_{m^{\prime} m}^{\ell}(\alpha, \beta, \gamma) h_{\ell m^{\prime}}^{\mathrm{P}}
$$

- PN dynamics: $Z_{\text {frame }}=\hat{L}$
- Extracting frame from the waveform (IMR) [O'Shaughnessy\&al 20II]
- Approximate behaviour post-merger:
$\Omega_{\text {frame }} \sim \omega_{220}^{\mathrm{QNM}}-\omega_{210}^{\mathrm{QNM}}$ [O'Shaughnessy\&al 20I2]

Pre- and post-merger frame

[SXS catalog] [Smoothness ?]

Relation to previous work

Previous works: - Leading order (different MR) [SpinTaylorF2, PhenomP]

- Quadratic phase (SUA) [Klein\&al 2014]

SPA/SUA	Fourier domain approach
$t_{f}: \omega\left(t_{f}\right)=\pi f \quad$ (SPA)	$t_{f}=-\frac{1}{2 \pi} \frac{\mathrm{~d} \Psi}{\mathrm{~d} f} \quad$ (IMR)
$T_{f}=\frac{1}{\sqrt{2 \dot{\omega}\left(t_{f}\right)}} \quad$ Rad. Reac. (SUA)	$T_{f}^{2}=\frac{1}{4 \pi^{2}}\left\|\frac{\mathrm{~d}^{2} \Psi}{\mathrm{~d} f^{2}}\right\|$
$\tilde{s}(f)=\tilde{h}(f) \sum \frac{(-i)^{p}}{2^{p} p!} T_{f}^{2 p} \partial_{t}^{2 p} F \quad$ (SUA)	$\tilde{s}(f)=\tilde{h}(f) \sum \frac{(-i)^{p}}{2^{p} p!} T_{f}^{2 p} \partial_{t}^{2 p} F$Taylor FD Quad. phase
$\tilde{s}(f)=\tilde{h}(f) \sum a_{k} F\left(t_{f} \pm k T_{f}\right)$ (Resum.)	$\tilde{s}(f)=\tilde{h}(f) \int d t \exp \left[-\frac{i}{2}\left(\frac{t-t_{f}}{T_{f}}\right)^{2}\right] F(t)$

New corrections: - Higher-order amplitude corrections $\mathrm{d}^{p} A / \mathrm{d} f^{p}$

- Local convolution approach for post-merger

Summary

LISA prospective parameter estimation

- Bayesian parameter estimation using full IMR signals for the full mass range
- Full Fourier-domain response of the instrument using $t(f)$ correspondence
- Higher-order corrections in the response available
- Including (non-spinning) merger and higher modes: EOBNRv2HM ROM waveforms
- Implementation using accelerated no-noise overlaps: few 10 s of $\mathrm{ms} /$ likelihood
- Analogy of formalism with FD precession
- Still preliminary - See J. Baker's poster for more results

Outlook

- Including spins (SEOBNRv4ROM, PhenomD/P)
- Including eccentricity
- Joint LIGO/LISA parameter estimation
- Parameter estimation as a function of time: accumulation of the signal
- Cosmology with LISA: standard sirens (EM or pure GW)
- Investigate superposition of signals
- Testing GR at high SNR / with multiband GW observations

Precession: magnitude of corrections

Example: $\quad q=3, \chi_{1}=(-0.3,0.5,0.7), \chi_{2}=(0.3,-0.2,-0.5)$

Precession: errors - case I

Amplitude relative to h22P

Phase difference

Precession: errors - case II

Amplitude relative to h 22 P

Phase difference

Precession: mismatches

Case I

Case II

- possible building block for models of precessing signals - robustness across parameter space ?

Example: sky position degeneracies

TD comparison to 2 nd peak

FD comparison to 2 nd peak

Amplitude

Phase

FD transfer functions for different modes

Normalized amplitude

Phase

FD timescales

Transfer functions figures of merit

Transfer functions and residuals

FIG. 5: Error in the transfer function for the orbital delay d_{O}, for $M=10^{7} M_{\odot}$.

Transfer functions and residuals

FIG. 7: Transfer function and reconstruction error for the orbital delay d_{O}, for $M=10^{2} M_{\odot}$.

Transfer functions and residuals

FIG. 6: Error in the transfer function for the basic observable y_{12}, for $M=10^{7} M_{\odot}$.

Transfer functions and residuals

FIG. 8: Transfer function and reconstruction error for the basic observable y_{12}, for $M=10^{2} M_{\odot}$.

Example of Bayesian inference I

Example of Bayesian inference II

