Fourier-domain response and Bayesian parameter estimation for LISA

Sylvain Marsat (AEI Potsdam)

in collaboration with J. Baker (NASA GSFC), P. Graff (APL)

TEGRAW, IAP - Paris - 2017-06-27

LISA BBH targets

20 MR5 220 18 200 16 180 [LISA L3 proposal] **MR2.1** 160 14 10⁻¹⁶ 140 12 Galactic Background onth 120 ^v $\lim_{\mathbf{I}} 10^7 \, M_{\rm G}$ MBHBs at z = 310⁻¹⁷ Verification Binaries * ∾ 10 **EMRI** Harmonics month Characteristic Strain \equiv LIGO-type BHBs $100 \, \vec{Q}$ hour $10^6\,M_\odot$ 10⁻¹⁸ GW150914 108 20Gal. Bin. (SNR > 7)ear mont 80 50 100 $10^5 \, M_\odot$ 10⁻¹⁹ |200|6 500 60 4 10⁻²⁰ MR5. 40 1000MR2 MR2.3 Observatory 2 ☆ 20 Characteristic Strain 10⁻²¹ - Total \rightarrow MR2 3000 MR4.1 0 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10² 10^{-5} 10⁸ 10⁹ 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10¹ Frequency (Hz) $M (M_{\odot})$ MR1.1 Galactic Binaries MR2.1 Light, seed black holes at high redshift How accurately will LISA measure MR2.2 Blackhole growth over cosmic history MR2.3a Mergers of Milky-way type galaxies parameters of BBH coalescences MR2.4a Detection of Intermediate Mass Black Holes MR2.4b High mass ratio Intermediate Mass Black Holes across parameter space ? MR3.1 EMRIs around massive black holes MR4.1 LIGO-type black holes MR5.1 Tests of GR with high SNR ring-down signals MR7.1 Astrophysical stochastic background MR7.2 Cosmological stochastic background

Sylvain Marsat

TEGRAW, IAP

2016-06-27

LISA BBH parameter estimation

LISA instrument response

Frequency observables: $y = \Delta \nu / \nu$

$$y_{slr} = \frac{1}{2} \frac{1}{1 - \hat{k} \cdot n_l} n_l \cdot \left(h(t - \hat{k} \cdot p_s) - h(t - \hat{k} \cdot p_r) \right) \cdot n_l$$

TDI: combinations of delayed y_{slr}

Formal problem: modulated and delayed signal $FT[F(t)h(t+d(t))] \leftrightarrow \tilde{h}(f), F(t), d(t)$

Separation of timescales: I/yr<<f

Analogy with precessing signals

Extension through merger/ringdown given FD hP ?

- Orbital delay
- Change of orientation with time
- Armlength delays

Low-f response: LIGO-like Unsufficient for IMR and low-mass signals

- Approximating I-frame hI as rotation of P-frame non-precessing waveform hP
- Used in SEOB (TD) and PhenomP (FD)

$$h^{\mathrm{I}}_{\ell m} = \sum_{m'} D^{\ell \ *}_{m'm}(\alpha,\beta,\gamma) \ h^{\mathrm{P}}_{\ell m'}$$

FD modulations and delays: formalism

A general view

Input:
$$\tilde{h}(f) = A(f)e^{-i\Psi(f)}$$

$$\begin{split} s(t) &= F(t)h(t+d(t))\\ \tilde{s}(f) &= \int df' \,\tilde{h}(f-f')\tilde{G}(f-f',f') & \longrightarrow\\ \tilde{G}(f,f') &= \int dt \, e^{2i\pi f't} e^{-2i\pi fd(t)}F(t) \end{split}$$

Separation of timescales: if F, d have only frequencies <<f, local convolution - expand h(f-f') in f'

2016-06-27

Convolution with frequency-dependent kernel

Sylvain Marsat

TEGRAW, IAP

FD LISA response

Compact spline representation: 300 pts for h, 800 pts for low-f and high-f response

FD response: figures of merit of approximation

Higher-order corrections

$$\tilde{s}(f) = \mathcal{T}(f)\tilde{h}(f)$$
 Leading order: $\mathcal{T}(f) = G(f, t_f)$

Phase (quadratic term):
$$\mathcal{T}(f) = \sum \frac{1}{p!} \left(\frac{i}{8\pi^2} \frac{\mathrm{d}^2 \Psi}{\mathrm{d}f^2} \right) \partial_t^{2p} G(f, t_f) \rightarrow T_{\mathrm{RR}}^2 = -\frac{1}{4\pi^2} \frac{\mathrm{d}^2 \Psi}{\mathrm{d}f^2}$$

rederivation of [Klein&al 2014] Amplitude: $\mathcal{T}(f) = \sum \frac{1}{(2i\pi)^p p!} \frac{1}{A} \frac{\mathrm{d}^p A}{\mathrm{d} f^p} \partial_t^p G(f, t_f)$ f-dependence (delays): $\mathcal{T}(f) = \sum \frac{1}{(2i\pi)^p p!} \partial_t^p \partial_f^p G(f, t_f)$

Improved delays:
$$\mathcal{T}(f) \simeq F(t_f) \exp\left[-2i\pi f d(t_f)(1-\dot{d}(t_f))\right]$$

Separation of timescales

(e)LISA: $\partial_t G \sim 2\pi f_0 G$ $f_0 = 1/\mathrm{yr} = 3.10^{-8} \mathrm{Hz} \ll f$ Precessing binaries: G = F(t)Inspiral: $\partial_t^2 F \sim \Omega_{\text{prec}}^2 \sim 2\text{PN}$ $\frac{\mathrm{d}^2 \Psi}{\mathrm{d}f^2} \sim T_{\mathrm{RR}}^2 \sim -2.5\text{PN}$

+ Merger-ringdown ?

FD response: figures of merit of approximation

Sylvain Marsat

FD response: reconstruction errors

 $M = 10^7 M_{\odot}$ Orbital delay - N:0 A:0 d:0 10-2 - N:0 A:0 d:0 10-2 - N:3 A:0 d:0 N:3 A:0 d:0 N:3 A:1 d:0 - N:3 A:1 d:0 10^{-3} 10-3 $|\Delta \mathbf{A}/\mathbf{A}(\mathcal{T}_O)|$ N:3 A:0 d:1 N:3 A:0 d:1 $|\Delta \Psi(\mathcal{T}_O)|$ N:3 A:1 d:1 N:3 A:1 d:1 10^{-4} 10-XXXXXX 10-5 10-5 10-6 10-6 10-5 10-5 10-4 10-3 10^{-4} 10-3 f (Hz) f (Hz) Constellation response 10-1 10^{-10} N:5 A:0 d:0 - N:0 A:0 d:0 – N:5 A:1 d:0 - N:3 A:0 d:0 10^{-2} 10^{-2} – N:5 A:0 d:1 $|\Delta {\cal T}_{12}/{\cal T}_{12}|$ N:5 A:0 d:0 $|\Delta \mathcal{T}_{12}/\mathcal{T}_{12}|$ N:5 A:1 d:1 10-3 10 www~ 10^{-4} 10-4 10-5 10-5 10-5 10-4 10-3 10-5 10-4 10-3 f (Hz) f (Hz)

Sylvain Marsat

TEGRAW, IAP

FD response: reconstruction errors

Bayesian inference implementation

Sylvain Marsat

TEGRAW, IAP

LISA Bayesian inference example: high-mass

LISA Bayesian inference example: intermediate-mass

LISA Bayesian inference example: low-mass

Precessing modulations in Fourier domain

Sylvain Marsat

Relation to previous work

Previous works: Leading order (different MR) [SpinTaylorF2, PhenomP] Quadratic phase (SUA) [Klein&al 2014] 		
pproach		
(IMR)		
(IMR)		
${}^{2p}_{t}F$ Taylor FD Quad. phase		
$\left(\frac{t-t_f}{T_f}\right)^2 \bigg] F(t)$		
(IM $_t^{2p}F$		

New corrections: • Higher-order amplitude corrections $d^p A/df^p$ Local convolution approach for post-merger

Summary

LISA prospective parameter estimation

- Bayesian parameter estimation using full IMR signals for the full mass range
- Full Fourier-domain response of the instrument using t(f) correspondence
- Higher-order corrections in the response available
- Including (non-spinning) merger and higher modes: EOBNRv2HM ROM waveforms
- Implementation using accelerated no-noise overlaps: few 10s of ms/likelihood
- Analogy of formalism with FD precession
- Still preliminary See J. Baker's poster for more results

Outlook

- Including spins (SEOBNRv4ROM, PhenomD/P)
- Including eccentricity
- Joint LIGO/LISA parameter estimation
- Parameter estimation as a function of time: accumulation of the signal
- Cosmology with LISA: standard sirens (EM or pure GW)
- Investigate superposition of signals
- Testing GR at high SNR / with multiband GW observations

Precession: magnitude of corrections

Example: $q = 3, \chi_1 = (-0.3, 0.5, 0.7), \chi_2 = (0.3, -0.2, -0.5)$

Sylvain Marsat

Precession: errors - case I

Amplitude relative to h22P

Phase difference

Precession: errors - case II

Phase difference Amplitude relative to h22P 1.4 0.10 FFT FFT 1.3 Ψ:0 A:0 Ψ:0 A:0 0.05 1.2 Ψ:2 A:2 Ψ:2 A:2 Conv. Conv. 1.1 $h_{22}^{\rm P} \to h_{22}^{\rm I}$ 0.00 0.9 -0.050.8 0.7 -0.100.050 0.100 0.005 0.010 0.005 0.010 0.050 0.100 Mf Mf 0.4 0.3 0.2 0.3 0.1 $h^{\mathrm{P}}_{22}
ightarrow h^{\mathrm{I}}_{21}$... FFT 0.0 Ψ:0 A:0 FFT -0.1 Ψ:2 A:2 Ψ:0 A:0 0.1 Conv. -0.2 Ψ:2 A:2 Conv. -0.3 0.0 0.005 0.050 0.100 0.005 0.010 0.050 0.100 0.010 Mf Mf

Sylvain Marsat

2016-06-27

Precession: mismatches

Case I

- possible building block for models of precessing signals
- robustness across parameter space ?

Example: sky position degeneracies

TD comparison to 2nd peak

FD transfer functions for different modes

Sylvain Marsat

GR21

2016-07-11

FD timescales

Transfer functions figures of merit

FIG. 5: Error in the transfer function for the orbital delay d_O , for $M = 10^7 M_{\odot}$.

FIG. 7: Transfer function and reconstruction error for the orbital delay d_O , for $M = 10^2 M_{\odot}$.

FIG. 6: Error in the transfer function for the basic observable y_{12} , for $M = 10^7 M_{\odot}$.

FIG. 8: Transfer function and reconstruction error for the basic observable y_{12} , for $M = 10^2 M_{\odot}$.

Example of Bayesian inference I

Example of Bayesian inference II

