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Scalar-tensor theories

Motivations

Tests of Einstein’s general relativity using gravitational waves

. We need precise gravitational waveforms for alternative
theories of gravity,

Why scalar-tensor theories ?

. It passes weak-field tests, i.e. in the Solar System,

. It predicts large deviation from GR in the strong-field regime,

. Hawking theorem (1976) : Binary BHs gravitational radiation indistinguishable from
GR,

. Deviations from GR are expected for neutron stars.
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Scalar-tensor theories

Scalar-tensor theories

The action

SST =
c3

16πG

∫
d4x
√
−g
[
φR− ω(φ)

φ
gαβ∂α∂βφ

]
+ Sm (m, gαβ)

Scalar field φ and scalar function ω(φ),

Matter fields m,

Physical metric gαβ : Scalar field only coupled to the gravitational sector,

Conformal metric g̃αβ : Scalar field only coupled to the matter sector.

The matter part

Self-gravitating bodies : the masses depend on the scalar field MA(φ)
(Eardley, 1975),

Sm = −
∑
A

∫
dtMA(φ) c2

√
−gαβ

vαAv
β
A

c2
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Scalar-tensor theories

Scalar-tensor theories

Far from the system

. Scalar field φ = φ0, scalar function ω(φ0) = ω0,

The set of ST parameters

Sensitivities : sA = d lnMA(φ)
d lnφ

∣∣∣
0
, and all higher order derivatives,

Derivatives of the scalar function ω(φ), i.e. dω
dφ

∣∣∣
0
,

ST parameters : G̃ = G(4+2ω0)
φ0(3+2ω0)

, α = 2+ω0−s1−s2+2s1s2
2+ω0

Newtonian result

ai1, N = − G̃αm2

r2
12

ni12

. Indistinguishable from GR, effective gravitational constant Geff = G̃α.
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Scalar-tensor theories

What has been done so far

Scalar tensor waveforms

Equations of motion at 2.5PN,

Tensor gravitational waveform to 2PN,

Scalar waveform to 1.5PN (starts at −0.5PN),

Energy flux to 1PN beyond the leading order (starts at −1PN),

Some remarks

. Done using the DIRE method (Pati & Will, 2000),

. To go to 2PN in the flux we need the EoM at 3PN .
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Scalar-tensor theories

This talk

Our goal

Compute the equations of motion at 3PN order.

The method

We will use the multipolar post-Newtonian formalism, in particular the method based on
a Fokker Lagrangian that was developped for the 4PN EoM in GR.
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3PN ST Fokker Lagrangian

The multipolar post-Newtonian formalism

In the near zone : post-Newtonian expansion

h̄µν =
∞∑
m=2

1

cm
h̄µνm , with �h̄µνm = 16πG τ̄µνm ,

ψ̄ =

∞∑
m=2

1

cm
ψ̄m , with �ψ̄m = −8πG τ̄ (s)

m

In the wave zone : multipolar expansion

M(h)αβ =

∞∑
n=1

Gnhαβ(n) , with �hαβ(n) = Λαβn
[
h(1), . . . , h(n−1);ψ

]
,

M(ψ) =

∞∑
n=1

Gnψ(n) , with �ψ(n) = Λ(s)
n

[
ψ(1), . . . , ψ(n−1);h

]
,

Buffer zone : matching between the near zone and far zone solutions :

M(h) =M
(
h̄
)

everywhere,

M(ψ) =M
(
ψ̄
)

everywhere.

Laura BERNARD Dynamics of compact binaries in ST theories at 3PN



3PN ST Fokker Lagrangian

The multipolar post-Newtonian formalism

In the near zone : post-Newtonian expansion

h̄µν =
∞∑
m=2

1

cm
h̄µνm , with �h̄µνm = 16πG τ̄µνm ,

ψ̄ =

∞∑
m=2

1

cm
ψ̄m , with �ψ̄m = −8πG τ̄ (s)

m

In the wave zone : multipolar expansion

M(h)αβ =

∞∑
n=1

Gnhαβ(n) , with �hαβ(n) = Λαβn
[
h(1), . . . , h(n−1);ψ

]
,

M(ψ) =
∞∑
n=1

Gnψ(n) , with �ψ(n) = Λ(s)
n

[
ψ(1), . . . , ψ(n−1);h

]
,

Buffer zone : matching between the near zone and far zone solutions :

M(h) =M
(
h̄
)

everywhere,

M(ψ) =M
(
ψ̄
)

everywhere.

Laura BERNARD Dynamics of compact binaries in ST theories at 3PN



3PN ST Fokker Lagrangian

The multipolar post-Newtonian formalism

In the near zone : post-Newtonian expansion

h̄µν =
∞∑
m=2

1

cm
h̄µνm , with �h̄µνm = 16πG τ̄µνm ,

ψ̄ =

∞∑
m=2

1

cm
ψ̄m , with �ψ̄m = −8πG τ̄ (s)

m

In the wave zone : multipolar expansion

M(h)αβ =

∞∑
n=1

Gnhαβ(n) , with �hαβ(n) = Λαβn
[
h(1), . . . , h(n−1);ψ

]
,

M(ψ) =
∞∑
n=1

Gnψ(n) , with �ψ(n) = Λ(s)
n

[
ψ(1), . . . , ψ(n−1);h

]
,

Buffer zone : matching between the near zone and far zone solutions :

M(h) =M
(
h̄
)

everywhere,

M(ψ) =M
(
ψ̄
)

everywhere.

Laura BERNARD Dynamics of compact binaries in ST theories at 3PN



3PN ST Fokker Lagrangian

What is a Fokker Lagrangian ?

Fokker (1929)

. Replace the gravitational degrees of freedom by their solution

SFokker [yA, vA, . . . ] = S [gsol (yB , vB , . . . ) , φsol (yB , vB , . . . ) ; vA]

. Generalized Lagrangian : dependent on the accelerations,

. Equations of motion for the particles are unchanged.

Why a Fokker Lagrangian ?

Simpler calculation, only for the conservative part,

The “n + 2” method : we need to know the metric at only half the order we would
have expected, O(n+ 2) instead of O(2n+ 2, 2n+ 1, 2n; 2n+ 2).
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3PN ST Fokker Lagrangian

Scalar-tensor theories

The gravitational part

Rescaled scalar field : ϕ = φ
φ0

,

From the conformal metric g̃µν = ϕgµν to the gothic metric g̃µν =
√
g̃g̃µν ,

SST =
c3φ0

32πG

∫
d4x

[
− 1

2

(
g̃µσ g̃µρ −

1

2
g̃µν g̃ρσ

)
g̃λγ∂λg̃

µν∂γ g̃
ρσ

+ g̃µν (∂σ g̃
ρµ∂ρg̃

σν − ∂ρg̃ρµ∂σ g̃σν)− 3 + 2ω

ϕ2
g̃αβ∂αϕ∂βϕ

]

The matter part

Sm = −
∑
A

∫
dtMA(φ) c2

√
−gαβ

vαAv
β
A

c2

. depends on the scalar field through the masses and the physical metric gαβ .
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3PN ST Fokker Lagrangian

Post-Newtonian formalism from GR to scalar-tensor
theories

Perturbed metric hµν = g̃µν − ηµν and scalar field ψ = ϕ− 1,

At leading order (h, ψ) = (h00ii = h00 + hii, h0i, hij ; ψ) = O (2, 3, 4; 2)

The ”n+ 2” method in ST : O (4, 5, 4; 4)

h00ii = −
4V

c2
−

8V 2

c4
+O

(
1

c6

)
,

h0i = −
4V i

c3
−

8

c5

(
Ri + V V i

)
+O

(
1

c7

)
,

hij = −
4

c4

(
Wij −

1

2
δijW

)
+O

(
1

c6

)
ψ = −

4ψ(0)

c2
+

2

c4

(
1−

φ0ω′0
3 + 2ω0

)
ψ2

(0) +O
(

1

c6

)
,

. We need V , V i and ψ(0) at 1PN and Ri, Wij at N,

∆Wij = −4πG

φ0
(σij − δijσkk)− ∂iV ∂jV − (3 + 2ω0)∂iψ(0) ∂jψ(0)
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3PN ST Fokker Lagrangian

How does it work in practice...

1 Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for
both :

the divergences at the position of the particles (ultraviolet),

the divergences of the PN solution at infinity (infrared),

L = FPB=0

∫
d3x

(
r

r0

)B
L

2 Treat the UV (and eventually the IR) divergences by dimensional regularisation,

L =

∫
ddxL

3 Add the tail term, if present (in GR it starts at 4PN).
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3PN ST Fokker Lagrangian

1- Compute the 3PN ST Lagrangian using Hadamard
regularisation

UV divergences

Compact bodies −→ modelised by point particles, i.e. δ(3) (x− yA(t))

Two constants of regularisation l1 and l2

IR divergence

post-Newtonian solution valid only in the near zone =⇒ divergences at infinty,

L = FPB=0

∫
d3x

(
r

r0

)B
L

in GR at 3PN no contribution,

in ST contributions at 3PN !

constant of regularisation r0 : does not vanish through a shift,

vanishes in the GR limit (ω0 → 0) and when s1 = s2 or s1 or 2 = 1
2

(BHs).
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3PN ST Fokker Lagrangian

2- Use dimensional regularisation to treat the UV
divergences

Principle

Go to d spatial dimensions, with d = 3 + ε.

. G→ G ld−3
0 ,

. Expand all functions when r1 → 0.

Compute the difference between HR and DR through the formula

DI =
1

ε

q1∑
q=q0

[
1

q + 1
+ ε ln l1

]
〈f (ε)
−3,q〉+ (1↔ 2)

Expand the Lagrangian in the limit ε→ 0.

Result

No more constant l1 and l2 : ok,

Presence of a pole 1
ε

: should vanish through a redefinition of the trajectory of the
particles.

Laura BERNARD Dynamics of compact binaries in ST theories at 3PN



3PN ST Fokker Lagrangian

2- Use dimensional regularisation to treat the UV
divergences

Principle

Go to d spatial dimensions, with d = 3 + ε.

. G→ G ld−3
0 ,

. Expand all functions when r1 → 0.

Compute the difference between HR and DR through the formula

DI =
1

ε

q1∑
q=q0

[
1

q + 1
+ ε ln l1

]
〈f (ε)
−3,q〉+ (1↔ 2)

Expand the Lagrangian in the limit ε→ 0.

Result

No more constant l1 and l2 : ok,

Presence of a pole 1
ε

: should vanish through a redefinition of the trajectory of the
particles.

Laura BERNARD Dynamics of compact binaries in ST theories at 3PN



3PN ST Fokker Lagrangian

3- Tail effects and IR divergences

A scalar tail effect ?

Constant r0 still present in the end result of the local part =⇒ Presence of tail
terms in the conservative Lagrangian at 3PN, originating from the scalar field ?

New effect in ST theories, due to the fact that the scalar field flux starts at −1PN,

At the end the constant r0 should disappear.

Test of the IR divergences

Use dimensional regularisation also for the IR divergences to test how strong the
regularisation procedure is :

If no difference with Hadamard : OK,

If different results : switch to the more powerful DimReg (for the tails also).

Constant r0 −→ pole 1/ε.
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First results

What has been done

Equations of motion at 2PN

Easy and ”quick” calculation : O(4, 3, 4; 4), only Hadamard regularisation,

Confirmation of the previous result by Mirshekari & Will (2013).

At 3PN

Fokker Lagrangian using Hadamard regularisation,

Some consistency checks :

GR limit : ω0 →∞ =⇒ GR result,

Two black hole limit : s1 = s2 = 1
2
=⇒ indistinguishable from GR.
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First results

Where we are

On-going calculations

From Hadamard to dimensional regularisation : very long calculation,

Eventual tail effects at 3PN coming from the scalar field.

What’s next ?

. Conserved quantities (energy, angular momentum . . .),

. Ready to use eom to be incorporated in the scalar waveform and the scalar flux at
2PN.
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Conclusion

Conclusion

Equations of motion at 3PN in scalar-tensor theories

First part computed using Hadamard regularisation ,

Dimentional regularisation and investigation of the tail effect : work in progress,

Conserved quantities : to be done.

Prospects

Waveform for ST theories at 2PN (inspiral phase),

Can be EOB waveform to have the full IMR waveform,

Do the same for other modified theories of gravity.
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