Dynamics of compact binary systems in scalar-tensor theories at the third post-Newtonian order

Laura BERNARD (IST, Lisbon)

in collaboration with A. HEFFERNAN, C. WILL

IAP colloquium - The Era of Gravitational Wave Astronomy June 26th, 2017

centra multidisciplinary centre for astrophysics

2 The 3PN scalar-tensor Fokker Lagrangian

IRST RESULTS

LAURA BERNARD

Dynamics of compact binaries in ST theories at 3PN

MOTIVATIONS

TESTS OF EINSTEIN'S GENERAL RELATIVITY USING GRAVITATIONAL WAVES

 We need precise gravitational waveforms for alternative theories of gravity,

Why scalar-tensor theories?

- ▷ It passes weak-field tests, *i.e.* in the Solar System,
- > It predicts large deviation from GR in the strong-field regime,
- Hawking theorem (1976) : Binary BHs gravitational radiation indistinguishable from GR,
- ▷ Deviations from GR are expected for neutron stars.

THE ACTION

$$S_{\rm ST} = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} g^{\alpha\beta} \partial_\alpha \partial_\beta \phi \right] + S_m \left(\mathfrak{m}, g_{\alpha\beta}\right)$$

- Scalar field ϕ and scalar function $\omega(\phi),$
- Matter fields m,
- Physical metric $g_{lphaeta}$: Scalar field only coupled to the gravitational sector,
- Conformal metric $\tilde{g}_{\alpha\beta}$: Scalar field only coupled to the matter sector.

THE ACTION

$$S_{\rm ST} = \frac{c^3}{16\pi G} \int \mathrm{d}^4 x \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} g^{\alpha\beta} \partial_\alpha \partial_\beta \phi \right] + S_m \left(\mathfrak{m}, g_{\alpha\beta}\right)$$

- Scalar field ϕ and scalar function $\omega(\phi)$,
- Matter fields m,
- Physical metric $g_{lphaeta}$: Scalar field only coupled to the gravitational sector,
- Conformal metric $\tilde{g}_{\alpha\beta}$: Scalar field only coupled to the matter sector.

The matter part

• Self-gravitating bodies : the masses depend on the scalar field $M_A(\phi)$ (Eardley, 1975),

$$S_{\rm m} = -\sum_A \int \mathrm{d}t \, M_A(\phi) \, c^2 \, \sqrt{-g_{\alpha\beta} \frac{v_A^{\alpha} v_A^{\beta}}{c^2}}$$

LAURA BERNARD

FAR FROM THE SYSTEM

 \triangleright Scalar field $\phi = \phi_0$, scalar function $\omega(\phi_0) = \omega_0$,

FAR FROM THE SYSTEM

 \triangleright Scalar field $\phi = \phi_0$, scalar function $\omega(\phi_0) = \omega_0$,

The set of ST parameters

- Sensitivities : $s_A = \left. \frac{\mathrm{d} \ln M_A(\phi)}{\mathrm{d} \ln \phi} \right|_0$, and all higher order derivatives,
- Derivatives of the scalar function $\omega(\phi)$, *i.e.* $\frac{d\omega}{d\phi}\Big|_{0}$,
- ST parameters : $\tilde{G} = \frac{G(4+2\omega_0)}{\phi_0(3+2\omega_0)}$, $\alpha = \frac{2+\omega_0 s_1 s_2 + 2s_1 s_2}{2+\omega_0}$

FAR FROM THE SYSTEM

 \triangleright Scalar field $\phi = \phi_0$, scalar function $\omega(\phi_0) = \omega_0$,

The set of ST parameters

• Sensitivities :
$$s_A = \left. \frac{d \ln M_A(\phi)}{d \ln \phi} \right|_0$$
, and all higher order derivatives,

- Derivatives of the scalar function $\omega(\phi)$, *i.e.* $\frac{d\omega}{d\phi}\Big|_{\alpha}$,
- ST parameters : $\tilde{G} = \frac{G(4+2\omega_0)}{\phi_0(3+2\omega_0)}$, $\alpha = \frac{2+\omega_0-s_1-s_2+2s_1s_2}{2+\omega_0}$

NEWTONIAN RESULT

$$a_{1,N}^i = -\frac{\tilde{G}\alpha m_2}{r_{12}^2} n_{12}^i$$

▷ Indistinguishable from GR, effective gravitational constant $G_{\text{eff}} = \tilde{G}\alpha$.

LAURA BERNARD

Dynamics of compact binaries in ST theories at 3PN

What has been done so far

Scalar tensor waveforms

- Equations of motion at 2.5PN,
- Tensor gravitational waveform to 2PN,
- Scalar waveform to 1.5PN (starts at -0.5PN),
- Energy flux to 1PN beyond the leading order (starts at -1PN),

What has been done so far

SCALAR TENSOR WAVEFORMS

- Equations of motion at 2.5PN,
- Tensor gravitational waveform to 2PN,
- Scalar waveform to 1.5PN (starts at -0.5PN),
- Energy flux to 1PN beyond the leading order (starts at -1PN),

Some remarks

- ▷ Done using the DIRE method (Pati & Will, 2000),
- $\triangleright\,$ To go to 2PN in the flux we need the EoM at 3PN .

This talk

OUR GOAL Compute the equations of motion at 3PN order.

This talk

OUR GOAL Compute the equations of motion at 3PN order.

The method

We will use the multipolar post-Newtonian formalism, in particular the method based on a Fokker Lagrangian that was developped for the 4PN EoM in GR.

The multipolar post-Newtonian formalism

• In the near zone : post-Newtonian expansion

$$\begin{split} \bar{h}^{\mu\nu} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{h}_m^{\mu\nu} \,, \quad \text{with} \quad \Box \bar{h}_m^{\mu\nu} = 16\pi G \, \bar{\tau}_m^{\mu\nu} \,, \\ \bar{\psi} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{\psi}_m \,, \quad \text{with} \quad \Box \bar{\psi}_m = -8\pi G \, \bar{\tau}_m^{(s)} \end{split}$$

The multipolar post-Newtonian formalism

• In the near zone : post-Newtonian expansion

$$\begin{split} \bar{h}^{\mu\nu} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{h}_m^{\mu\nu} \,, \quad \text{with} \quad \Box \bar{h}_m^{\mu\nu} = 16\pi G \, \bar{\tau}_m^{\mu\nu} \,, \\ \bar{\psi} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{\psi}_m \,, \quad \text{with} \quad \Box \bar{\psi}_m = -8\pi G \, \bar{\tau}_m^{(s)} \end{split}$$

• In the wave zone : multipolar expansion

$$\mathcal{M}(h)^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_{(n)}^{\alpha\beta}, \quad \text{with} \quad \Box h_{(n)}^{\alpha\beta} = \Lambda_n^{\alpha\beta} \left[h_{(1)}, \dots, h_{(n-1)}; \psi \right],$$
$$\mathcal{M}(\psi) = \sum_{n=1}^{\infty} G^n \psi_{(n)}, \quad \text{with} \quad \Box \psi_{(n)} = \Lambda_n^{(s)} \left[\psi_{(1)}, \dots, \psi_{(n-1)}; h \right],$$

The multipolar post-Newtonian formalism

• In the near zone : post-Newtonian expansion

$$\begin{split} \bar{h}^{\mu\nu} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{h}_m^{\mu\nu} \,, \quad \text{with} \quad \Box \bar{h}_m^{\mu\nu} = 16\pi G \, \bar{\tau}_m^{\mu\nu} \,, \\ \bar{\psi} &= \sum_{m=2}^{\infty} \frac{1}{c^m} \bar{\psi}_m \,, \quad \text{with} \quad \Box \bar{\psi}_m = -8\pi G \, \bar{\tau}_m^{(s)} \end{split}$$

• In the wave zone : multipolar expansion

$$\mathcal{M}(h)^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_{(n)}^{\alpha\beta}, \quad \text{with} \quad \Box h_{(n)}^{\alpha\beta} = \Lambda_n^{\alpha\beta} \left[h_{(1)}, \dots, h_{(n-1)}; \psi \right],$$
$$\mathcal{M}(\psi) = \sum_{n=1}^{\infty} G^n \psi_{(n)}, \quad \text{with} \quad \Box \psi_{(n)} = \Lambda_n^{(s)} \left[\psi_{(1)}, \dots, \psi_{(n-1)}; h \right],$$

• Buffer zone : matching between the near zone and far zone solutions :

$$\overline{\mathcal{M}(h)} = \mathcal{M}(\bar{h})$$
 everywhere,
 $\overline{\mathcal{M}(\psi)} = \mathcal{M}(\bar{\psi})$ everywhere.

WHAT IS A FOKKER LAGRANGIAN?

Fokker (1929)

 $\triangleright\,$ Replace the gravitational degrees of freedom by their solution

 $S_{\text{Fokker}}[y_A, v_A, \dots] = S[g_{\text{sol}}(y_B, v_B, \dots), \phi_{\text{sol}}(y_B, v_B, \dots); v_A]$

- ▷ Generalized Lagrangian : dependent on the accelerations,
- ▷ Equations of motion for the particles are unchanged.

WHAT IS A FOKKER LAGRANGIAN?

Fokker (1929)

 $\triangleright\,$ Replace the gravitational degrees of freedom by their solution

 $S_{\text{Fokker}}[y_A, v_A, \dots] = S[g_{\text{sol}}(y_B, v_B, \dots), \phi_{\text{sol}}(y_B, v_B, \dots); v_A]$

> Generalized Lagrangian : dependent on the accelerations,

▷ Equations of motion for the particles are unchanged.

Why a Fokker Lagrangian?

- Simpler calculation, only for the conservative part,
- The "n + 2" method : we need to know the metric at only half the order we would have expected, O(n + 2) instead of O(2n + 2, 2n + 1, 2n; 2n + 2).

THE GRAVITATIONAL PART

- Rescaled scalar field : $\varphi = \frac{\phi}{\phi_0}$,
- From the conformal metric $\tilde{g}_{\mu\nu} = \varphi g_{\mu\nu}$ to the gothic metric $\tilde{\mathfrak{g}}^{\mu\nu} = \sqrt{\tilde{g}}\tilde{g}^{\mu\nu}$,

$$S_{\rm ST} = \frac{c^3 \phi_0}{32\pi G} \int d^4 x \left[-\frac{1}{2} \left(\tilde{\mathfrak{g}}_{\mu\sigma} \tilde{\mathfrak{g}}_{\mu\rho} - \frac{1}{2} \tilde{\mathfrak{g}}_{\mu\nu} \tilde{\mathfrak{g}}_{\rho\sigma} \right) \tilde{\mathfrak{g}}^{\lambda\gamma} \partial_\lambda \tilde{\mathfrak{g}}^{\mu\nu} \partial_\gamma \tilde{\mathfrak{g}}^{\rho\sigma} + \tilde{\mathfrak{g}}_{\mu\nu} \left(\partial_\sigma \tilde{\mathfrak{g}}^{\rho\mu} \partial_\rho \tilde{\mathfrak{g}}^{\sigma\nu} - \partial_\rho \tilde{\mathfrak{g}}^{\rho\mu} \partial_\sigma \tilde{\mathfrak{g}}^{\sigma\nu} \right) - \frac{3 + 2\omega}{\varphi^2} \tilde{\mathfrak{g}}^{\alpha\beta} \partial_\alpha \varphi \partial_\beta \varphi \right]$$

THE MATTER PART

$$S_{\rm m} = -\sum_A \int \mathrm{d}t \, M_A(\phi) \, c^2 \, \sqrt{-g_{\alpha\beta} \frac{v_A^\alpha v_A^\beta}{c^2}}$$

 \triangleright depends on the scalar field through the masses and the physical metric $g_{\alpha\beta}$.

LAURA BERNARD

Post-Newtonian formalism from GR to scalar-tensor theories

- Perturbed metric $h^{\mu\nu} = \tilde{\mathfrak{g}}^{\mu\nu} \eta^{\mu\nu}$ and scalar field $\psi = \varphi 1$,
- At leading order $(h,\psi) = (h^{00ii} = h^{00} + h^{ii}, h^{0i}, h^{ij}; \, \psi) = \mathcal{O}\left(2,3,4;\,2\right)$

Post-Newtonian formalism from GR to scalar-tensor theories

- Perturbed metric $h^{\mu\nu} = \tilde{\mathfrak{g}}^{\mu\nu} \eta^{\mu\nu}$ and scalar field $\psi = \varphi 1$,
- At leading order $(h,\psi)=(h^{00ii}=h^{00}+h^{ii},h^{0i},h^{ij};\,\psi)=\mathcal{O}\left(2,3,4;\,2\right)$

The "n + 2" method in ST : O(4, 5, 4; 4)

$$\begin{split} h^{00ii} &= -\frac{4V}{c^2} - \frac{8V^2}{c^4} + \mathcal{O}\left(\frac{1}{c^6}\right), \\ h^{0i} &= -\frac{4V^i}{c^3} - \frac{8}{c^5} \left(R_i + VV^i\right) + \mathcal{O}\left(\frac{1}{c^7}\right), \\ h^{ij} &= -\frac{4}{c^4} \left(W_{ij} - \frac{1}{2}\delta_{ij}W\right) + \mathcal{O}\left(\frac{1}{c^6}\right) \\ \psi &= -\frac{4\psi_{(0)}}{c^2} + \frac{2}{c^4} \left(1 - \frac{\phi_0\omega'_0}{3 + 2\omega_0}\right)\psi^2_{(0)} + \mathcal{O}\left(\frac{1}{c^6}\right), \end{split}$$

Post-Newtonian formalism from GR to scalar-tensor theories

- Perturbed metric $h^{\mu\nu} = \tilde{\mathfrak{g}}^{\mu\nu} \eta^{\mu\nu}$ and scalar field $\psi = \varphi 1$,
- At leading order $(h,\psi) = (h^{00ii} = h^{00} + h^{ii}, h^{0i}, h^{ij};\,\psi) = \mathcal{O}\left(2,3,4;\,2\right)$

The "n + 2" method in ST : O(4, 5, 4; 4)

$$\begin{split} h^{00ii} &= -\frac{4V}{c^2} - \frac{8V^2}{c^4} + \mathcal{O}\left(\frac{1}{c^6}\right) \,, \\ h^{0i} &= -\frac{4V^i}{c^3} - \frac{8}{c^5} \left(R_i + VV^i\right) + \mathcal{O}\left(\frac{1}{c^7}\right) \,, \\ h^{ij} &= -\frac{4}{c^4} \left(W_{ij} - \frac{1}{2}\delta_{ij}W\right) + \mathcal{O}\left(\frac{1}{c^6}\right) \\ \psi &= -\frac{4\psi_{(0)}}{c^2} + \frac{2}{c^4} \left(1 - \frac{\phi_0\omega'_0}{3 + 2\omega_0}\right)\psi^2_{(0)} + \mathcal{O}\left(\frac{1}{c^6}\right) \,, \end{split}$$

 \triangleright We need $V,\,V^i$ and $\psi_{(0)}$ at 1PN and $R^i,\,W_{ij}$ at N,

$$\Delta W_{ij} = -\frac{4\pi G}{\phi_0} \left(\sigma_{ij} - \delta_{ij} \sigma_{kk} \right) - \partial_i V \,\partial_j V - (3 + 2\omega_0) \partial_i \psi_{(0)} \,\partial_j \psi_{(0)}$$

LAURA BERNARD

How does it work in practice...

- Ocmpute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :
 - the divergences at the position of the particles (ultraviolet),
 - the divergences of the PN solution at infinity (infrared),

$$L = \mathrm{FP}_{B=0} \int \mathrm{d}^3 x \left(\frac{r}{r_0}\right)^B \overline{\mathcal{L}}$$

HOW DOES IT WORK IN PRACTICE...

- Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :
 - the divergences at the position of the particles (ultraviolet),
 - the divergences of the PN solution at infinity (infrared),

$$L = \mathrm{FP}_{B=0} \int \mathrm{d}^3 x \left(\frac{r}{r_0}\right)^B \overline{\mathcal{L}}$$

② Treat the UV (and eventually the IR) divergences by dimensional regularisation,

$$L = \int \mathrm{d}^d x \, \overline{\mathcal{L}}$$

HOW DOES IT WORK IN PRACTICE...

- Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :
 - the divergences at the position of the particles (ultraviolet),
 - the divergences of the PN solution at infinity (infrared),

$$L = \mathrm{FP}_{B=0} \int \mathrm{d}^3 x \left(\frac{r}{r_0}\right)^B \overline{\mathcal{L}}$$

② Treat the UV (and eventually the IR) divergences by dimensional regularisation,

$$L = \int \mathrm{d}^d x \, \overline{\mathcal{L}}$$

Add the tail term, if present (in GR it starts at 4PN).

1- Compute the 3PN ST Lagrangian using Hadamard regularisation

UV DIVERGENCES

- Compact bodies \longrightarrow modelised by point particles, *i.e.* $\delta^{(3)} \left(\mathbf{x} \mathbf{y}_A(t) \right)$
- Two constants of regularisation l_1 and l_2

1- Compute the 3PN ST Lagrangian using Hadamard regularisation

UV DIVERGENCES

- Compact bodies \longrightarrow modelised by point particles, *i.e.* $\delta^{(3)} \left(\mathbf{x} \mathbf{y}_A(t) \right)$
- Two constants of regularisation l_1 and l_2

IR DIVERGENCE

ullet post-Newtonian solution valid only in the near zone \Longrightarrow divergences at infinty,

$$L = \mathrm{FP}_{B=0} \int \mathrm{d}^3 x \left(\frac{r}{r_0}\right)^B \overline{\mathcal{L}}$$

- in GR at 3PN no contribution,
- in ST contributions at 3PN !
 - constant of regularisation r_0 : does not vanish through a shift,
 - vanishes in the GR limit ($\omega_0 \to 0$) and when $s_1 = s_2$ or $s_{1 \text{ or } 2} = \frac{1}{2}$ (BHs).

2- USE DIMENSIONAL REGULARISATION TO TREAT THE UV DIVERGENCES

Principle

- Go to d spatial dimensions, with $d = 3 + \epsilon$.
 - $\triangleright \ G \to G l_0^{d-3},$
 - \triangleright Expand all functions when $r_1 \rightarrow 0$.
- Compute the difference between HR and DR through the formula

$$\mathcal{D}I = \frac{1}{\varepsilon} \sum_{q=q_0}^{q_1} \left[\frac{1}{q+1} + \varepsilon \ln l_1 \right] \langle f_{-3,q}^{(\varepsilon)} \rangle + (1 \leftrightarrow 2)$$

• Expand the Lagrangian in the limit $\varepsilon \to 0$.

2- USE DIMENSIONAL REGULARISATION TO TREAT THE UV DIVERGENCES

Principle

- Go to d spatial dimensions, with $d = 3 + \epsilon$.
 - $\triangleright \ G \to G \, l_0^{d-3}$,
 - \triangleright Expand all functions when $r_1 \rightarrow 0$.
- Compute the difference between HR and DR through the formula

$$\mathcal{D}I = \frac{1}{\varepsilon} \sum_{q=q_0}^{q_1} \left[\frac{1}{q+1} + \varepsilon \ln l_1 \right] \langle f_{-3,q}^{(\varepsilon)} \rangle + (1 \leftrightarrow 2)$$

• Expand the Lagrangian in the limit $\varepsilon \to 0$.

Result

- No more constant l_1 and l_2 : ok,
- Presence of a **pole** $\frac{1}{\epsilon}$: should vanish through a redefinition of the trajectory of the particles.

3- TAIL EFFECTS AND IR DIVERGENCES

A scalar tail effect?

- Constant r_0 still present in the end result of the local part \implies Presence of tail terms in the conservative Lagrangian at 3PN, originating from the scalar field?
- New effect in ST theories, due to the fact that the scalar field flux starts at -1PN,
- At the end the constant r_0 should disappear.

3- TAIL EFFECTS AND IR DIVERGENCES

A SCALAR TAIL EFFECT ?

- Constant r_0 still present in the end result of the local part \implies Presence of tail terms in the conservative Lagrangian at 3PN, originating from the scalar field?
- New effect in ST theories, due to the fact that the scalar field flux starts at -1PN,
- At the end the constant r_0 should disappear.

TEST OF THE IR DIVERGENCES

- Use dimensional regularisation also for the IR divergences to test how strong the regularisation procedure is :
 - If no difference with Hadamard : OK,
 - If different results : switch to the more powerful DimReg (for the tails also).
- Constant $r_0 \longrightarrow \text{pole } 1/\varepsilon$.

What has been done

Equations of motion at 2PN

- \bullet Easy and "quick" calculation : $\mathcal{O}(4,3,4;\,4),$ only Hadamard regularisation,
- Confirmation of the previous result by Mirshekari & Will (2013).

What has been done

Equations of motion at 2PN

- $\bullet\,$ Easy and "quick" calculation : $\mathcal{O}(4,3,4;\,4),$ only Hadamard regularisation,
- Confirmation of the previous result by Mirshekari & Will (2013).

At 3PN

- Fokker Lagrangian using Hadamard regularisation,
- Some consistency checks :
 - GR limit : $\omega_0 \to \infty \Longrightarrow$ GR result,
 - Two black hole limit : $s_1 = s_2 = \frac{1}{2} \implies$ indistinguishable from GR.

Where we are

ON-GOING CALCULATIONS

- From Hadamard to dimensional regularisation : very long calculation,
- Eventual tail effects at 3PN coming from the scalar field.

Where we are

ON-GOING CALCULATIONS

- From Hadamard to dimensional regularisation : very long calculation,
- Eventual tail effects at 3PN coming from the scalar field.

WHAT'S NEXT?

- ▷ Conserved quantities (energy, angular momentum ...),
- ▶ Ready to use eom to be incorporated in the scalar waveform and the scalar flux at 2PN.

CONCLUSION

Equations of motion at 3PN in scalar-tensor theories

- First part computed using Hadamard regularisation ,
- Dimentional regularisation and investigation of the tail effect : work in progress,
- Conserved quantities : to be done.

Prospects

- Waveform for ST theories at 2PN (inspiral phase),
- Can be EOB waveform to have the full IMR waveform,
- Do the same for other modified theories of gravity.