# Dynamics of compact binary systems in scalar-tensor theories at the third post-Newtonian order 

## Laura BERNARD (IST, Lisbon)

in collaboration with A. Heffernan, C. Will

IAP colloquium - The Era of Gravitational Wave Astronomy June 26 ${ }^{\text {th }}, 2017$
gravitation in técnico
centra
multidisciplinary centre for astrophysics

Plan
(1) SCALAR-TENSOR THEORIES
(2) The 3PN scalar-tensor Fokker Lagrangian
(3) First results

## Motivations

Tests of Einstein's general relativity using gravitational waves
$\triangleright$ We need precise gravitational waveforms for alternative theories of gravity,

## Why scalar-Tensor theories?

$\triangleright$ It passes weak-field tests, i.e. in the Solar System,
$\triangleright$ It predicts large deviation from GR in the strong-field regime,
$\triangleright$ Hawking theorem (1976) : Binary BHs gravitational radiation indistinguishable from GR,
$\triangleright$ Deviations from GR are expected for neutron stars.

## Scalar-TEnsor theories

The action

$$
S_{\mathrm{ST}}=\frac{c^{3}}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g}\left[\phi R-\frac{\omega(\phi)}{\phi} g^{\alpha \beta} \partial_{\alpha} \partial_{\beta} \phi\right]+S_{m}\left(\mathfrak{m}, g_{\alpha \beta}\right)
$$

- Scalar field $\phi$ and scalar function $\omega(\phi)$,
- Matter fields $\mathfrak{m}$,
- Physical metric $\boldsymbol{g}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$ : Scalar field only coupled to the gravitational sector,
- Conformal metric $\tilde{g}_{\alpha \beta}$ : Scalar field only coupled to the matter sector.


## Scalar-TEnsor theories

The action

$$
S_{\mathrm{ST}}=\frac{c^{3}}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g}\left[\phi R-\frac{\omega(\phi)}{\phi} g^{\alpha \beta} \partial_{\alpha} \partial_{\beta} \phi\right]+S_{m}\left(\mathfrak{m}, g_{\alpha \beta}\right)
$$

- Scalar field $\phi$ and scalar function $\omega(\phi)$,
- Matter fields $\mathfrak{m}$,
- Physical metric $\boldsymbol{g}_{\boldsymbol{\alpha} \boldsymbol{\beta}}$ : Scalar field only coupled to the gravitational sector,
- Conformal metric $\tilde{g}_{\alpha \beta}$ : Scalar field only coupled to the matter sector.

The matter part

- Self-gravitating bodies : the masses depend on the scalar field $M_{A}(\phi)$ (Eardley, 1975),

$$
S_{\mathrm{m}}=-\sum_{A} \int \mathrm{~d} t M_{A}(\phi) c^{2} \sqrt{-g_{\alpha \beta} \frac{v_{A}^{\alpha} v_{A}^{\beta}}{c^{2}}}
$$

## Scalar-TEnsor theories

FAR FROM THE SYSTEM
$\triangleright$ Scalar field $\phi=\phi_{0}$, scalar function $\omega\left(\phi_{0}\right)=\omega_{0}$,

## Scalar-TEnsor theories

FAR FROM THE SYSTEM
$\triangleright$ Scalar field $\phi=\phi_{0}$, scalar function $\omega\left(\phi_{0}\right)=\omega_{0}$,

The set of ST parameters

- Sensitivities : $s_{A}=\left.\frac{\mathrm{d} \ln M_{A}(\phi)}{\mathrm{d} \ln \phi}\right|_{0}$, and all higher order derivatives,
- Derivatives of the scalar function $\omega(\phi)$, i.e. $\left.\frac{\mathrm{d} \omega}{\mathrm{d} \phi}\right|_{0}$,
- ST parameters : $\tilde{G}=\frac{G\left(4+2 \omega_{0}\right)}{\phi_{0}\left(3+2 \omega_{0}\right)}, \alpha=\frac{2+\omega_{0}-s_{1}-s_{2}+2 s_{1} s_{2}}{2+\omega_{0}}$


## Scalar-TEnsor theories

FAR FROM THE SYSTEM
$\triangleright$ Scalar field $\phi=\phi_{0}$, scalar function $\omega\left(\phi_{0}\right)=\omega_{0}$,

The set of ST parameters

- Sensitivities : $s_{A}=\left.\frac{\mathrm{d} \ln M_{A}(\phi)}{\mathrm{d} \ln \phi}\right|_{0}$, and all higher order derivatives,
- Derivatives of the scalar function $\omega(\phi)$, i.e. $\left.\frac{\mathrm{d} \omega}{\mathrm{d} \phi}\right|_{0}$,
- ST parameters : $\tilde{G}=\frac{G\left(4+2 \omega_{0}\right)}{\phi_{0}\left(3+2 \omega_{0}\right)}, \alpha=\frac{2+\omega_{0}-s_{1}-s_{2}+2 s_{1} s_{2}}{2+\omega_{0}}$

Newtonian result

$$
a_{1, N}^{i}=-\frac{\tilde{G} \alpha m_{2}}{r_{12}^{2}} n_{12}^{i}
$$

$\triangleright$ Indistinguishable from GR, effective gravitational constant $G_{\text {eff }}=\tilde{G} \alpha$.

## What has been done so far

SCALAR TENSOR WAVEFORMS

- Equations of motion at 2.5PN,
- Tensor gravitational waveform to 2 PN ,
- Scalar waveform to 1.5 PN (starts at -0.5 PN ),
- Energy flux to 1PN beyond the leading order (starts at -1 PN ),


## What has been done so far

## Scalar tensor waveforms

- Equations of motion at 2.5PN,
- Tensor gravitational waveform to 2 PN ,
- Scalar waveform to 1.5 PN (starts at -0.5 PN ),
- Energy flux to 1PN beyond the leading order (starts at -1 PN ),


## Some remarks

$\triangleright$ Done using the DIRE method (Pati \& Will, 2000),
$\triangleright$ To go to 2 PN in the flux we need the EoM at 3 PN .

## This talk

## Our goal

Compute the equations of motion at 3PN order.

## THIS TALK

## OUR GOAL

Compute the equations of motion at 3PN order.

The method
We will use the multipolar post-Newtonian formalism, in particular the method based on a Fokker Lagrangian that was developped for the 4PN EoM in GR.

## The multipolar post-Newtonian formalism

- In the near zone : post-Newtonian expansion

$$
\begin{aligned}
\bar{h}^{\mu \nu} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{h}_{m}^{\mu \nu}, & \text { with } & \square \bar{h}_{m}^{\mu \nu}=16 \pi G \bar{\tau}_{m}^{\mu \nu} \\
\bar{\psi} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{\psi}_{m}, & \text { with } & \square \bar{\psi}_{m}=-8 \pi G \bar{\tau}_{m}^{(s)}
\end{aligned}
$$

The multipolar post-Newtonian formalism

- In the near zone : post-Newtonian expansion

$$
\begin{aligned}
\bar{h}^{\mu \nu} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{h}_{m}^{\mu \nu}, & \text { with } \quad \square \bar{h}_{m}^{\mu \nu}=16 \pi G \bar{\tau}_{m}^{\mu \nu}, \\
\bar{\psi} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{\psi}_{m}, & \text { with } \quad \square \bar{\psi}_{m}=-8 \pi G \bar{\tau}_{m}^{(s)}
\end{aligned}
$$

- In the wave zone: multipolar expansion

$$
\begin{aligned}
& \mathcal{M}(h)^{\alpha \beta}=\sum_{n=1}^{\infty} G^{n} h_{(n)}^{\alpha \beta}, \quad \text { with } \quad \square h_{(n)}^{\alpha \beta}=\Lambda_{n}^{\alpha \beta}\left[h_{(1)}, \ldots, h_{(n-1)} ; \psi\right], \\
& \mathcal{M}(\psi)=\sum_{n=1}^{\infty} G^{n} \psi_{(n)}, \quad \text { with } \quad \square \psi_{(n)}=\Lambda_{n}^{(s)}\left[\psi_{(1)}, \ldots, \psi_{(n-1)} ; h\right],
\end{aligned}
$$

## The multipolar post-Newtonian formalism

- In the near zone : post-Newtonian expansion

$$
\begin{aligned}
\bar{h}^{\mu \nu} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{h}_{m}^{\mu \nu}, & \text { with } & \square \bar{h}_{m}^{\mu \nu}=16 \pi G \bar{\tau}_{m}^{\mu \nu} \\
\bar{\psi} & =\sum_{m=2}^{\infty} \frac{1}{c^{m}} \bar{\psi}_{m}, & \text { with } & \square \bar{\psi}_{m}=-8 \pi G \bar{\tau}_{m}^{(s)}
\end{aligned}
$$

- In the wave zone : multipolar expansion

$$
\begin{aligned}
\mathcal{M}(h)^{\alpha \beta} & =\sum_{n=1}^{\infty} G^{n} h_{(n)}^{\alpha \beta}, \quad \text { with } \quad \square h_{(n)}^{\alpha \beta}=\Lambda_{n}^{\alpha \beta}\left[h_{(1)}, \ldots, h_{(n-1)} ; \psi\right] \\
\mathcal{M}(\psi) & =\sum_{n=1}^{\infty} G^{n} \psi_{(n)}, \quad \text { with } \quad \square \psi_{(n)}=\Lambda_{n}^{(s)}\left[\psi_{(1)}, \ldots, \psi_{(n-1)} ; h\right]
\end{aligned}
$$

- Buffer zone : matching between the near zone and far zone solutions:

$$
\begin{array}{ll}
\overline{\mathcal{M}(h)}=\mathcal{M}(\bar{h}) & \text { everywhere } \\
\overline{\mathcal{M}(\psi)}=\mathcal{M}(\bar{\psi}) & \text { everywhere }
\end{array}
$$

## What is a Fokker Lagrangian?

Fokker (1929)
$\triangleright$ Replace the gravitational degrees of freedom by their solution

$$
S_{\text {Fokker }}\left[y_{A}, v_{A}, \ldots\right]=S\left[g_{\mathrm{sol}}\left(y_{B}, v_{B}, \ldots\right), \phi_{\mathrm{sol}}\left(y_{B}, v_{B}, \ldots\right) ; v_{A}\right]
$$

$\triangleright$ Generalized Lagrangian : dependent on the accelerations,
$\triangleright$ Equations of motion for the particles are unchanged.

## What is a Fokker Lagrangian?

Fokker (1929)
$\triangleright$ Replace the gravitational degrees of freedom by their solution

$$
S_{\text {Fokker }}\left[y_{A}, v_{A}, \ldots\right]=S\left[g_{\text {sol }}\left(y_{B}, v_{B}, \ldots\right), \phi_{\text {sol }}\left(y_{B}, v_{B}, \ldots\right) ; v_{A}\right]
$$

$\triangleright$ Generalized Lagrangian : dependent on the accelerations,
$\triangleright$ Equations of motion for the particles are unchanged.

## Why a Fokker Lagrangian?

- Simpler calculation, only for the conservative part,
- The " $\mathbf{n}+\mathbf{2}$ " method : we need to know the metric at only half the order we would have expected, $\mathcal{O}(n+2)$ instead of $\mathcal{O}(2 n+2,2 n+1,2 n ; 2 n+2)$.


## SCALAR-TENSOR THEORIES

The gravitational part

- Rescaled scalar field : $\varphi=\frac{\phi}{\phi_{0}}$,
- From the conformal metric $\tilde{g}_{\mu \nu}=\varphi g_{\mu \nu}$ to the gothic metric $\tilde{\mathfrak{g}}^{\mu \nu}=\sqrt{\tilde{g}} \tilde{g}^{\mu \nu}$,

$$
\begin{aligned}
S_{\mathrm{ST}}=\frac{c^{3} \phi_{0}}{32 \pi G} \int \mathrm{~d}^{4} x[ & -\frac{1}{2}\left(\tilde{\mathfrak{g}}_{\mu \sigma} \tilde{\mathfrak{g}}_{\mu \rho}-\frac{1}{2} \tilde{\mathfrak{g}}_{\mu \nu} \tilde{\mathfrak{g}}_{\rho \sigma}\right) \tilde{\mathfrak{g}}^{\lambda \gamma} \partial_{\lambda} \tilde{\mathfrak{g}}^{\mu \nu} \partial_{\gamma} \tilde{\mathfrak{g}}^{\rho \sigma} \\
& \left.+\tilde{\mathfrak{g}}_{\mu \nu}\left(\partial_{\sigma} \tilde{\mathfrak{g}}^{\rho \mu} \partial_{\rho} \tilde{\mathfrak{g}}^{\sigma \nu}-\partial_{\rho} \tilde{\mathfrak{g}}^{\rho \mu} \partial_{\sigma} \tilde{\mathfrak{g}}^{\sigma \nu}\right)-\frac{3+2 \omega}{\varphi^{2}} \tilde{\mathfrak{g}}^{\alpha \beta} \partial_{\alpha} \varphi \partial_{\beta} \varphi\right]
\end{aligned}
$$

The matter part

$$
S_{\mathrm{m}}=-\sum_{A} \int \mathrm{~d} t M_{A}(\phi) c^{2} \sqrt{-g_{\alpha \beta} \frac{v_{A}^{\alpha} v_{A}^{\beta}}{c^{2}}}
$$

$\triangleright$ depends on the scalar field through the masses and the physical metric $g_{\alpha \beta}$.

## Post-Newtonian formalism from GR TO SCALAR-TENSOR THEORIES

- Perturbed metric $h^{\mu \nu}=\tilde{\mathfrak{g}}^{\mu \nu}-\eta^{\mu \nu}$ and scalar field $\psi=\varphi-1$,
- At leading order $(h, \psi)=\left(h^{00 i i}=h^{00}+h^{i i}, h^{0 i}, h^{i j} ; \psi\right)=\mathcal{O}(2,3,4 ; 2)$


## Post-Newtonian formalism from GR TO SCALAR-TENSOR THEORIES

- Perturbed metric $h^{\mu \nu}=\tilde{\mathfrak{g}}^{\mu \nu}-\eta^{\mu \nu}$ and scalar field $\psi=\varphi-1$,
- At leading order $(h, \psi)=\left(h^{00 i i}=h^{00}+h^{i i}, h^{0 i}, h^{i j} ; \psi\right)=\mathcal{O}(2,3,4 ; 2)$

The " $n+2$ " method in ST : $\mathcal{O}(4,5,4 ; 4)$

$$
\begin{aligned}
& h^{00 i i}=-\frac{4 V}{c^{2}}-\frac{8 V^{2}}{c^{4}}+\mathcal{O}\left(\frac{1}{c^{6}}\right) \\
& h^{0 i}=-\frac{4 V^{i}}{c^{3}}-\frac{8}{c^{5}}\left(R_{i}+V V^{i}\right)+\mathcal{O}\left(\frac{1}{c^{7}}\right) \\
& h^{i j}=-\frac{4}{c^{4}}\left(W_{i j}-\frac{1}{2} \delta_{i j} W\right)+\mathcal{O}\left(\frac{1}{c^{6}}\right) \\
& \psi=-\frac{4 \psi(0)}{c^{2}}+\frac{2}{c^{4}}\left(1-\frac{\phi_{0} \omega_{0}^{\prime}}{3+2 \omega_{0}}\right) \psi_{(0)}^{2}+\mathcal{O}\left(\frac{1}{c^{6}}\right)
\end{aligned}
$$

## Post-Newtonian formalism from GR TO sCALAR-TENSOR THEORIES

- Perturbed metric $h^{\mu \nu}=\tilde{\mathfrak{g}}^{\mu \nu}-\eta^{\mu \nu}$ and scalar field $\psi=\varphi-1$,
- At leading order $(h, \psi)=\left(h^{00 i i}=h^{00}+h^{i i}, h^{0 i}, h^{i j} ; \psi\right)=\mathcal{O}(2,3,4 ; 2)$

The " $n+2$ " METHOD IN ST : $\mathcal{O}(4,5,4 ; 4)$

$$
\begin{aligned}
& h^{00 i i}=-\frac{4 V}{c^{2}}-\frac{8 V^{2}}{c^{4}}+\mathcal{O}\left(\frac{1}{c^{6}}\right) \\
& h^{0 i}=-\frac{4 V^{i}}{c^{3}}-\frac{8}{c^{5}}\left(R_{i}+V V^{i}\right)+\mathcal{O}\left(\frac{1}{c^{7}}\right) \\
& h^{i j}=-\frac{4}{c^{4}}\left(W_{i j}-\frac{1}{2} \delta_{i j} W\right)+\mathcal{O}\left(\frac{1}{c^{6}}\right) \\
& \psi=-\frac{4 \psi(0)}{c^{2}}+\frac{2}{c^{4}}\left(1-\frac{\phi_{0} \omega_{0}^{\prime}}{3+2 \omega_{0}}\right) \psi_{(0)}^{2}+\mathcal{O}\left(\frac{1}{c^{6}}\right)
\end{aligned}
$$

$\triangleright$ We need $V, V^{i}$ and $\psi_{(0)}$ at 1 PN and $R^{i}, W_{i j}$ at N ,

$$
\Delta W_{i j}=-\frac{4 \pi G}{\phi_{0}}\left(\sigma_{i j}-\delta_{i j} \sigma_{k k}\right)-\partial_{i} V \partial_{j} V-\left(3+2 \omega_{0}\right) \partial_{i} \psi_{(0)} \partial_{j} \psi_{(0)}
$$

## How does it work in practice...

(1) Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :

- the divergences at the position of the particles (ultraviolet),
- the divergences of the PN solution at infinity (infrared),

$$
L=\mathrm{FP}_{B=0} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}
$$

## How does it work in practice...

(0) Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :

- the divergences at the position of the particles (ultraviolet),
- the divergences of the PN solution at infinity (infrared),

$$
L=\mathrm{FP}_{B=0} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}
$$

- Treat the UV (and eventually the IR) divergences by dimensional regularisation,

$$
L=\int \mathrm{d}^{d} x \overline{\mathcal{L}}
$$

## How does it work in practice...

- Compute the (local) Fokker Lagrangian using Hadamard-type regularisation for both :
- the divergences at the position of the particles (ultraviolet),
- the divergences of the PN solution at infinity (infrared),

$$
L=\mathrm{FP}_{B=0} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}
$$

- Treat the UV (and eventually the IR) divergences by dimensional regularisation,

$$
L=\int \mathrm{d}^{d} x \overline{\mathcal{L}}
$$

- Add the tail term, if present (in GR it starts at 4PN).


## 1- Compute the 3PN ST Lagrangian using Hadamard REGULARISATION

UV DIVERGENCES

- Compact bodies $\longrightarrow$ modelised by point particles, i.e. $\delta^{(3)}\left(\mathbf{x}-\mathbf{y}_{A}(t)\right)$
- Two constants of regularisation $l_{1}$ and $l_{2}$


## 1- Compute the 3PN ST Lagrangian using Hadamard REGULARISATION

UV DIVERGENCES

- Compact bodies $\longrightarrow$ modelised by point particles, i.e. $\delta^{(3)}\left(\mathbf{x}-\mathbf{y}_{A}(t)\right)$
- Two constants of regularisation $l_{1}$ and $l_{2}$


## IR DIVERGENCE

- post-Newtonian solution valid only in the near zone $\Longrightarrow$ divergences at infinty,

$$
L=\mathrm{FP}_{B=0} \int \mathrm{~d}^{3} x\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}
$$

- in GR at 3PN no contribution,
- in ST contributions at 3PN!
- constant of regularisation $r_{0}$ : does not vanish through a shift,
- vanishes in the GR limit $\left(\omega_{0} \rightarrow 0\right)$ and when $s_{1}=s_{2}$ or $s_{1 \text { or } 2}=\frac{1}{2}(\mathrm{BHs})$.

2- Use dimensional regularisation to treat the UV DIVERGENCES

## Principle

- Go to $d$ spatial dimensions, with $d=3+\varepsilon$.
$\triangleright G \rightarrow G l_{0}^{d-3}$,
$\triangleright$ Expand all functions when $r_{1} \rightarrow 0$.
- Compute the difference between HR and DR through the formula

$$
\mathcal{D} I=\frac{1}{\varepsilon} \sum_{q=q_{0}}^{q_{1}}\left[\frac{1}{q+1}+\varepsilon \ln l_{1}\right]\left\langle f_{-3, q}^{(\varepsilon)}\right\rangle+(1 \leftrightarrow 2)
$$

- Expand the Lagrangian in the limit $\varepsilon \rightarrow 0$.


## 2- Use dimensional regularisation to treat the UV

 DIVERGENCES
## Principle

- Go to $d$ spatial dimensions, with $d=3+\varepsilon$.
$\triangleright G \rightarrow G l_{0}^{d-3}$,
$\triangleright$ Expand all functions when $r_{1} \rightarrow 0$.
- Compute the difference between HR and DR through the formula

$$
\mathcal{D} I=\frac{1}{\varepsilon} \sum_{q=q_{0}}^{q_{1}}\left[\frac{1}{q+1}+\varepsilon \ln l_{1}\right]\left\langle f_{-3, q}^{(\varepsilon)}\right\rangle+(1 \leftrightarrow 2)
$$

- Expand the Lagrangian in the limit $\varepsilon \rightarrow 0$.


## Result

- No more constant $l_{1}$ and $l_{2}$ : ok,
- Presence of a pole $\frac{1}{\varepsilon}$ : should vanish through a redefinition of the trajectory of the particles.


## 3- Tail effects and IR divergences

A SCALAR TAIL EFFECT?

- Constant $r_{0}$ still present in the end result of the local part $\Longrightarrow$ Presence of tail terms in the conservative Lagrangian at 3PN, originating from the scalar field ?
- New effect in ST theories, due to the fact that the scalar field flux starts at -1 PN,
- At the end the constant $r_{0}$ should disappear.


## 3- Tail effects and IR divergences

A SCALAR TAIL EFFECT?

- Constant $r_{0}$ still present in the end result of the local part $\Longrightarrow$ Presence of tail terms in the conservative Lagrangian at 3 PN , originating from the scalar field ?
- New effect in ST theories, due to the fact that the scalar field flux starts at -1 PN,
- At the end the constant $r_{0}$ should disappear.


## Test of the IR divergences

- Use dimensional regularisation also for the IR divergences to test how strong the regularisation procedure is:
- If no difference with Hadamard: OK,
- If different results : switch to the more powerful DimReg (for the tails also).
- Constant $r_{0} \longrightarrow$ pole $1 / \varepsilon$.


## What has been done

EqUATIONS OF MOTION AT 2PN

- Easy and "quick" calculation : $\mathcal{O}(4,3,4 ; 4)$, only Hadamard regularisation,
- Confirmation of the previous result by Mirshekari \& Will (2013).


## What has been done

Equations of motion at 2PN

- Easy and "quick" calculation : $\mathcal{O}(4,3,4 ; 4)$, only Hadamard regularisation,
- Confirmation of the previous result by Mirshekari \& Will (2013).


## Ат 3PN

- Fokker Lagrangian using Hadamard regularisation,
- Some consistency checks :
- GR limit : $\omega_{0} \rightarrow \infty \Longrightarrow$ GR result,
- Two black hole limit : $s_{1}=s_{2}=\frac{1}{2} \Longrightarrow$ indistinguishable from GR.


## Where we are

On-GOING CALCULATIONS

- From Hadamard to dimensional regularisation : very long calculation,
- Eventual tail effects at 3PN coming from the scalar field.


## Where we are

On-GOING CALCULATIONS

- From Hadamard to dimensional regularisation : very long calculation,
- Eventual tail effects at 3PN coming from the scalar field.

```
What's next?
```

$\triangleright$ Conserved quantities (energy, angular momentum ...),
$\triangleright$ Ready to use eom to be incorporated in the scalar waveform and the scalar flux at 2PN.

## Conclusion

Equations of motion at 3PN in scalar-TEnsor theories

- First part computed using Hadamard regularisation ,
- Dimentional regularisation and investigation of the tail effect : work in progress,
- Conserved quantities : to be done.

Prospects

- Waveform for ST theories at 2PN (inspiral phase),
- Can be EOB waveform to have the full IMR waveform,
- Do the same for other modified theories of gravity.

