4.5 Post-Newtonian order gravitational radiation

Tanguy Marchand - IAP marchand@iap.fr

T. Marchand, L. Blanchet, G. Faye 2016 (CQG) arxiv:1607.07601

IAP - 26th June 2017
I. Introduction
II. The multipolar-post-Minkowskian algorithm
III. The 4.5PN project
I. INTRODUCTION

PRL 116, 061102 (2016)

Post-Newtonian theory

- Perturbative expansion of relativistic effects
$\rightarrow \mathrm{PN} \rightarrow\left(\frac{v}{c}\right)^{2}$
- More and more difficulties appear as we go to higher orders

Blanchet-Damour-lyer formalism

Blanchet-Damour-lyer formalism

[Matching equation Blanchet 1998] figure: www. virgo-gw.eu

Once the equations of motions and the flux is known at n-PN

We consider consecutive circular orbits of orbital frequencies Ω, energy E_{n} and emitting a flux \mathcal{F}_{n}

$$
x=\left(\frac{G m \Omega}{c^{3}}\right)^{2 / 3}
$$

$$
\frac{\mathrm{d} E_{n}(x)}{\mathrm{d} t}=\mathcal{F}_{n}(x)
$$

$$
\phi_{\mathrm{n}}=f_{\mathrm{n}}(x)
$$

0PN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN PN order

LIGO Scientific and Virgo collaboration arxiv:1606.04856

II. The multipolar postMinkowskian (MPM) algorithm

The MPM algorithm

$$
G_{\mu \nu}\left(g_{\alpha \beta}, \partial g_{\alpha \beta}, \partial^{2} g_{\alpha \beta}\right)=0
$$

$$
\begin{gathered}
h^{\mu \nu} \equiv \sqrt{-g} g^{\mu \nu}-\eta^{\mu \nu}=\mathcal{G} h_{(1)}^{\mu \nu}+\mathcal{G}^{2} h_{(2)}^{\mu \nu}+\ldots \\
\left\{\begin{array}{c}
\square h_{(i)}^{\mu \nu}=\Lambda_{(i)}^{\mu \nu}\left(h_{(1)}^{\alpha \beta}, \ldots, h_{(i-1)}^{\alpha \beta}\right) \\
\partial^{\mu} h_{(i) \mu \nu}=0 \quad[\text { harmonic coordinates }]
\end{array}\right.
\end{gathered}
$$

The MPM algorithm

$$
\begin{aligned}
& h_{(1)}^{\mu \nu} \sim \sum_{l \geq 0} \partial_{i_{1}, \ldots, i_{l}}\left(\frac{M_{i_{1} \ldots i_{l}}(t-r)}{r}\right)+\sum_{l \geq 2} \partial_{i_{1}, \ldots, i_{l}}\left(\frac{S_{i_{1} \ldots i_{l}}(t-r)}{r}\right) \\
&=h_{M}^{1}+h_{M_{i j}}^{1}+h_{M_{i j k}}^{1}+\cdots+h_{S_{i j}}^{1}+h_{S_{i j k}}^{1}+\ldots \quad \text { [Thorne 80] } \\
& h_{(2)}^{\mu \nu}=h_{(2) M \times M}^{\mu \nu}+h_{(2) M \times M_{i j}}^{\mu \nu}+h_{(2) M_{i j} \times M_{i j}}^{\mu \nu}+\ldots
\end{aligned}
$$

First issue: regularization

$$
\left\{\begin{aligned}
\square h_{(i)}^{\mu \nu} & =\Lambda_{(i)}^{\mu \nu}\left(h_{(1)}^{\alpha \beta}, \ldots, h_{(i-1)}^{\alpha \beta}\right) \\
\partial^{\mu} h_{(i) \mu \nu} & =0
\end{aligned}\right.
$$

$\square^{-1} \Lambda(x, t)=\int \mathrm{d}^{3} x^{\prime} \frac{\Lambda\left(x^{\prime}, t-\left|x-x^{\prime}\right|\right)}{\left|x-x^{\prime}\right|}$
Issue: $\quad \Lambda \sim_{r \rightarrow 0} \frac{1}{r^{k}}, k \geq 3$

$$
\mathrm{FP}_{B=0} \square^{-1}\left[\left(\frac{r}{r_{0}}\right)^{B} \Lambda\right]
$$

[Analytic continuation in $B \in \mathbb{C}$]
[Finite Part when $B \rightarrow 0$]

Second issue: tails

$$
\left\{\begin{aligned}
\square h_{(i)}^{\mu \nu} & =\Lambda_{(i)}^{\mu \nu}\left(h_{(1)}^{\alpha \beta}, \ldots, h_{(i-1)}^{\alpha \beta}\right) \\
\partial^{\mu} h_{(i) \mu \nu} & =0
\end{aligned}\right.
$$

4.5PN project

Ultimate Goal: compute the flux up to 4.5 PN

Done so far: compute all the 4.5PN contributions of the tails:

$$
\begin{aligned}
& h_{(2) M \times M_{i j}}^{\mu \nu}, h_{(3) M \times M \times M_{i j}}^{\mu \nu}, h_{(4) M \times M \times M \times M_{i j}}^{\mu \nu} \\
& h_{(2) M \times M_{i j k}^{\mu}}^{\mu \nu}, h_{(3) M \times M \times M_{i j k}^{\mu \nu}} \\
& h_{(2) M \times M_{i j k l}}^{\mu \nu}, \ldots
\end{aligned}
$$

[TM Blanchet Faye (2016) 1607.07601]

- Required new analytical formulae

$$
\begin{aligned}
\mathrm{FP}_{B=0} \square^{-1} & {\left[\hat{n}_{L}\left(\frac{r}{r_{0}}\right)^{B} r^{-k} \int_{1}^{\infty} \mathrm{d} y Q_{m}(y) F(t-r y)\right] } \\
& =-\hat{n}_{L} \int_{1}^{\infty} \mathrm{d} s F^{(k-2)}(t-r s)\left(Q_{l}(s) \int_{1}^{s} \mathrm{~d} y Q_{m}^{(-k+2)}(y) P_{l}(y)+P_{l}(s) \int_{s}^{\infty} \mathrm{d} y Q_{m}^{(-k+2)}(y) Q_{l}(y)\right)
\end{aligned}
$$

- Implementing the algorithm into Mathematica
[xAct - xTensor]

Going to radiative coordinate

$$
\begin{aligned}
h_{M^{3} \times M_{i j}}^{00}= & \frac{M^{3} \hat{n}_{a b}}{r} \int_{0}^{+\infty} \mathrm{d} \tau M_{a b}^{(6)}\left\{-\frac{8}{3} \ln ^{3}\left(\frac{\tau}{2 r}\right)+\frac{148}{21} \ln ^{2}\left(\frac{\tau}{2 r}\right)+\frac{232}{21} \ln \left(\frac{r}{r_{0}}\right) \ln \left(\frac{\tau}{2 r}\right)\right. \\
& \left.+\frac{1016}{2205} \ln \left(\frac{\tau}{2 r}\right)+\frac{104}{15} \ln \left(\frac{r}{r_{0}}\right)+\frac{16489}{1575}-\frac{232 \pi^{2}}{63}\right\}+\mathcal{O}\left(\frac{1}{r^{2-\epsilon}}\right) \\
H_{M^{3} \times M_{i j}}^{00}= & \frac{M^{3} \hat{N}_{a b}}{R} \int_{0}^{+\infty} \mathrm{d} \tau M_{a b}^{(6)}\left\{-\frac{8}{3} \ln ^{3}\left(\frac{\tau}{2 b_{0}}\right)-4 \ln ^{2}\left(\frac{\tau}{2 b_{0}}\right)+\frac{232}{21} \ln \left(\frac{\tau}{2 b_{0}}\right) \ln \left(\frac{\tau}{2 r_{0}}\right)\right. \\
& \quad X^{\mu}+\xi^{\mu}(x) \quad\left\{\begin{array}{l}
\xi^{0}=-2 M \ln \left(\frac{r}{b_{0}}\right) \\
\xi^{i}=0
\end{array}\right. \\
& \left.\ln \left(\frac{\tau}{2 b_{0}}\right)+\frac{104}{15} \ln \left(\frac{\tau}{2 r_{0}}\right)+\frac{16489}{1575}-\frac{232 \pi^{2}}{63}\right\}+\mathcal{O}\left(\frac{1}{R^{2}}\right)
\end{aligned}
$$

We can compute the flux directly from $H^{\mu \nu}$

Matching equation to compute the multipole moments

$$
\begin{aligned}
\nu & =\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \\
\gamma & =\frac{G m}{r c^{2}} \quad \text { (circular orbits) }
\end{aligned}
$$

Tails

$$
\begin{aligned}
\mathcal{F}_{\text {tails }}=\frac{32 c^{5}}{5 G} & \nu^{2} \gamma^{5}\left\{4 \pi \gamma^{3 / 2}+\ldots\right. \\
& +\left(\frac{9997778801}{106444800}-\frac{6848}{105} \ln \left(\frac{r}{r_{0}}\right)+\left[-\frac{8058312817}{2661120}+\frac{287}{32} \pi^{2}+\frac{572}{3} \ln \left(\frac{r}{r_{0}^{\prime}}\right)\right] \nu\right. \\
& \left.\left.\quad-\frac{12433367}{13824} \nu^{2}-\frac{1026257}{266112} \nu^{3}\right) \pi \gamma^{9 / 2}+\mathcal{O}\left(\frac{1}{c^{11}}\right)\right\}
\end{aligned}
$$

Tails-of-tails-of-tails and Tails-of-tails \times tails

$$
\begin{aligned}
\mathcal{F}_{\mathrm{T}-\mathrm{T}-\mathrm{T} \text { and } \mathrm{T}-\mathrm{T} * \mathrm{~T}}=\frac{32 c^{5}}{5 G} \nu^{2} \gamma^{5}\{ & \left(-\frac{467044}{3675}-\frac{3424}{105} \ln (16 \gamma)+\frac{6848}{105} \ln \left(\frac{r}{r_{0}}\right)-\frac{6848}{105} \gamma_{\mathrm{E}}\right) \pi \gamma^{9 / 2} \\
& \left.+\mathcal{O}\left(\frac{1}{c^{11}}\right)\right\}
\end{aligned}
$$

$$
\begin{gathered}
\nu=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \\
x=\left(\frac{G m \Omega}{c^{3}}\right)^{2 / 3}=\mathcal{O}\left(\frac{1}{c^{2}}\right)
\end{gathered}
$$

$$
\mathcal{F}_{\text {total }}=\frac{32 c^{5}}{5 G} \nu^{2} x^{5}\left\{1+\left(-\frac{1247}{336}-\frac{35}{12} \nu\right) x+4 \pi x^{3 / 2}+\left(-\frac{44711}{9072}+\frac{9271}{504} \nu+\frac{65}{18} \nu^{2}\right) x^{2}\right.
$$

$$
+\left(-\frac{8191}{672}-\frac{583}{24} \nu\right) \pi x^{5 / 2}+\left[\frac{6643739519}{69854400}+\frac{16}{3} \pi^{2}-\frac{1712}{105} \gamma_{E}\right.
$$

$$
\left.-\frac{856}{105} \ln (16 x)+\left(-\frac{134543}{7776}+\frac{41}{48} \pi^{2}\right) \nu-\frac{94403}{3024} \nu^{2}-\frac{775}{324} \nu^{3}\right] x^{3}
$$

[Tanaka et al. gr-qc/9701050] $+\left(-\frac{16285}{504}+\frac{214745}{1728} \nu+\frac{193385}{3024} \nu^{2}\right) \pi x^{7 / 2}+($ unknown coefficients $) x^{4}$
$+\left(\frac{265978667519}{745113600}-\frac{6848}{105} \gamma_{\mathrm{E}}-\frac{3424}{105} \ln (16 x)+\left[\frac{2062241}{22176}+\frac{41}{12} \pi^{2}\right] \nu\right.$

$\left.\left.-\frac{133112905}{290304} \nu^{2}-\frac{3719141}{38016} \nu^{3}\right) \pi x^{9 / 2}+\mathcal{O}\left(x^{5}\right)\right\}$.

Conclusion

-Goal: reach 4.5PN Flux in order the have the 4.5PN phase
-Done so far: Tail effects up to 4.5PN, and the 4.5PN term in the flux of circular orbits.
-What's next: Computing $M_{i j}$ at 4PN and $S_{i j}$ at 3PN.

Ultimately, 4.5PN phase and polarization

