Stochastic gravitational wave background from stalling binary black holes

Irina Dvorkin (Institut d'Astrophysique de Paris)

Dvorkin and Barausse, MNRAS (2017) [arXiv:1702.06964]

The era of gravitational wave astronomy, IAP, 26 June 2017

Spectrum of gravitational waves

Massive black hole binaries ($M\sim 10^5-10^9 M_{\odot})$

 $\bullet\,$ Galaxy merger $\to\,$ satellite falls into the host galaxy

Massive black hole binaries ($M \sim 10^5 - 10^9 M_{\odot}$)

- $\bullet~\mbox{Galaxy}$ merger $\rightarrow~\mbox{satellite}$ falls into the host galaxy
- Dynamical friction \rightarrow bound BH binary

Massive black hole binaries $(M \sim 10^5 - 10^9 M_{\odot})$

- $\bullet\,$ Galaxy merger $\to\,$ satellite falls into the host galaxy
- Dynamical friction \rightarrow bound BH binary
- Scattering of stars that intersect the orbit (loss cone) ightarrow orbit decays

Massive black hole binaries $(M \sim 10^5 - 10^9 M_{\odot})$

- $\bullet\,$ Galaxy merger $\to\,$ satellite falls into the host galaxy
- Dynamical friction \rightarrow bound BH binary
- Scattering of stars that intersect the orbit (loss cone) \rightarrow orbit decays
- Emission of $GW \rightarrow merger$

Final-parsec problem

Final-parsec problem

Solutions:

- Galaxy rotation [Holley-Bockelmann & Khan 2015]
- Tri-axial galactic potential [Yu 2002; Vasiliev et al. 2014; Sesana & Khan 2015]
- Disc migration [Haiman et al. 2009]
- Interactions with a third BH [Hoffman & Loeb 2007; Bonetti et al. 2016]

Current upper limits from PTAs

What are we missing?

- $M \sigma$ relation is biased \rightarrow lower amplitude
- \bullet Efficient coupling binary-environment \rightarrow less time in band
- $\bullet~\mbox{Non-efficient}$ coupling binary-environment $\rightarrow~\mbox{long}$ merging timescales

What are we missing?

- $M \sigma$ relation is biased \rightarrow lower amplitude
- Efficient coupling binary-environment \rightarrow less time in band
- \bullet Non-efficient coupling binary-environment \rightarrow long merging timescales

What if all the binaries stall?

Stochastic background from BH binaries

- Seeds: PopIII remnants (~ $200M_{\odot}$); direct collapse (~ 10^5M_{\odot})
- BH-galaxy co-evolution model [Barausse (2012)]
- BH binaries form when galaxies merge

Stochastic background from BH binaries

- Seeds: PopIII remnants (~ $200 M_{\odot}$); direct collapse (~ $10^5 M_{\odot}$)
- BH-galaxy co-evolution model [Barausse (2012)]
- BH binaries form when galaxies merge

Stochastic GW background:

$$\Omega_{\rm gw}(f) = \frac{f}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{dE}{df}$$

Emission frequency f is twice the orbital frequency f_o of the binary

Stalling radius

Hardening radius: orbital decay through interactions with the bulge

$$a_h = 11 \left(rac{m_1 + m_2}{10^8 M_\odot}
ight) \left[rac{q}{(1+q)^2}
ight] \left(rac{\sigma}{100 \mathrm{km/s}}
ight)^{-2} \mathrm{pc}$$

• 'GW radius': GW emission drives coalescence in a Hubble time $a_{gw} = 7 \times 10^{-2} \left(\frac{m_1 + m_2}{10^8 M_{\odot}}\right)^{3/4} \left[\frac{q}{(1+q)^2}\right]^{1/4} \times \left(\frac{t_H}{13 \text{Gyr}}\right)^{1/4} \text{ pc}$

[Mass ratio: $q = \frac{m_2}{m_1} \leq 1$, stellar velocity dispersion σ]

Mildly pessimistic model

All binaries stall at a_{gw} [SKA: observe 50 pulsars for 10 yrs, 30 ns accuracy]

Mildly pessimistic model

All binaries stall at a_{gw} [SKA: observe 50 pulsars for 10 yrs, 30 ns accuracy]

Very pessimistic model

All binaries stall at $MAX(a_{gw}, a_h)$ [SKA: observe 50 pulsars for 10 yrs, 30 ns accuracy]

Unexpectedly optimistic model

All binaries arrive to a_h and evolve from there

Unexpectedly optimistic model

All binaries arrive to a_h and evolve from there

How many systems with $a_h < a_{gw}$?

• Hardening radius

$$a_h = 11 \left(\frac{m_1 + m_2}{10^8 M_{\odot}} \right) \left[\frac{q}{(1+q)^2} \right] \left(\frac{\sigma}{100 \text{km/s}} \right)^{-2} \text{ pc}$$

• 'GW radius'

$$a_{gw} = 7 \times 10^{-2} \left(\frac{m_1 + m_2}{10^8 M_{\odot}}\right)^{3/4} \left[\frac{q}{(1+q)^2}\right]^{1/4} \times \left(\frac{t_H}{13 \text{Gyr}}\right)^{1/4} \text{ pc}$$

How many systems with $a_h < a_{gw}$?

• Hardening radius

$$a_h = 11 \left(\frac{m_1 + m_2}{10^8 M_{\odot}} \right) \left[\frac{q}{(1+q)^2} \right] \left(\frac{\sigma}{100 \text{km/s}} \right)^{-2} \text{ pc}$$

'GW radius'

 \rightarrow

$$a_{gw} = 7 \times 10^{-2} \left(\frac{m_1 + m_2}{10^8 M_{\odot}}\right)^{3/4} \left[\frac{q}{(1+q)^2}\right]^{1/4} \times \left(\frac{t_H}{13 \text{Gyr}}\right)^{1/4} \text{ pc}$$

For $q \lesssim 10^{-3}$: $a_h < a_{gw} \rightarrow \text{guaranteed merger!}$

How many systems with $a_h < a_{gw}$?

Hardening radius

$$a_h = 11 \left(rac{m_1 + m_2}{10^8 M_\odot}
ight) \left[rac{q}{(1+q)^2}
ight] \left(rac{\sigma}{100 \mathrm{km/s}}
ight)^{-2} \mathrm{pc}$$

'GW radius'

$$a_{gw} = 7 \times 10^{-2} \left(\frac{m_1 + m_2}{10^8 M_{\odot}}\right)^{3/4} \left[\frac{q}{(1+q)^2}\right]^{1/4} \times \left(\frac{t_H}{13 \text{Gyr}}\right)^{1/4} \text{ pc}$$

ightarrow For $q \lesssim 10^{-3}$: $a_h < a_{gw}
ightarrow$ guaranteed merger!

But:

- ightarrow Do binaries with $q \lesssim 10^{-3}$ become bound ?
- $\rightarrow\,$ Is dynamical friction efficient if $q \lesssim 10^{-3}$?

How to get $q \lesssim 10^{-3}$ binaries

Dynamical friction timescale for a satellite BH in the host galaxy:

$$t_{\rm DF} \approx \frac{19 {\rm Gyr}}{\ln(1+M_{\rm h,\star}/M_{\rm bh,s})} \left(\frac{R}{5 {\rm kpc}}\right)^2 \frac{\sigma_{\rm h}}{200 {\rm km/s}} \frac{10^8 M_\odot}{M_{\rm bh,s}}$$

Typically, small $M_{
m bh,s}/M_{
m bh,h}
ightarrow$ large $t_{
m DF}$

How to get $q \lesssim 10^{-3}$ binaries

Dynamical friction timescale for a satellite BH in the host galaxy:

$$t_{\rm DF} \approx \frac{19 {\rm Gyr}}{\ln(1+M_{\rm h,\star}/M_{\rm bh,s})} \left(\frac{R}{5 {\rm kpc}}\right)^2 \frac{\sigma_{\rm h}}{200 {\rm km/s}} \frac{10^8 M_\odot}{M_{\rm bh,s}}$$

Typically, small $M_{\rm bh,s}/M_{\rm bh,h}
ightarrow$ large $t_{\rm DF}$

But: if the satellite BH retains its stellar bulge until it is tidally stripped, its effective mass is larger \rightarrow small $t_{\rm DF}$

How to get $q \lesssim 10^{-3}$ binaries

Dynamical friction timescale for a satellite BH in the host galaxy:

$$t_{\rm DF} \approx \frac{19 {\rm Gyr}}{\ln(1+\textit{M}_{\rm h,\star}/\textit{M}_{\rm bh,s})} \left(\frac{R}{5 {\rm kpc}}\right)^2 \frac{\sigma_{\rm h}}{200 {\rm km/s}} \frac{10^8 M_\odot}{M_{\rm bh,s}}$$

Typically, small $M_{\rm bh,s}/M_{\rm bh,h}
ightarrow$ large $t_{\rm DF}$

But: if the satellite BH retains its stellar bulge until it is tidally stripped, its effective mass is larger \rightarrow small $t_{\rm DF}$

$$\begin{split} t_{\rm DF} &\approx 0.38 {\rm Gyr} \times \left(\frac{\textit{M}_{\rm bh,h}}{10^9 \, M_\odot}\right)^{0.5} \left(\frac{\textit{M}_{\rm bh,s}}{10^6 \, M_\odot}\right)^{-0.1} (1+z)^{-2.44} \\ &\times \left[1+0.07 \ln \left(\frac{\textit{M}_{\rm bh,h}}{10^9 \, M_\odot}\right) - 0.08 \ln \left(\frac{\textit{M}_{\rm bh,s}}{10^6 \, M_\odot}\right)\right]^{-1} \end{split}$$

DF timescale depends on stellar density profile

[Dosopoulou & Antonini (2016)]

DF timescale depends on stellar density profile

 $\gamma = 0.6$

[Dosopoulou & Antonini (2016)]

Detection prospects with future PTA

SKA-based PTA, 30 ns timing accuracy

Mass distribution

Redshift distribution

[Dvorkin & Barausse (2017)]

• Even in the most pessimistic scenario, massive BH binaries produce a GW background detectable after 10-15 years of observations with a future generation of PTAs

Conclusions

- Even in the most pessimistic scenario, massive BH binaries produce a GW background detectable after 10-15 years of observations with a future generation of PTAs
- There might exist a sub-population of massive BH binaries for which $a_h < a_{gw}$, which are guaranteed to merge within a Hubble time
 - Will be detected with SKA within 5-10 years of observations
 - Will be detected with current PTAs after 15 years of observations
 - LISA will see ~ 0.5 such events per year as intermediate-mass-ratio inspirals ($q \lesssim 10^{-3})$

Additional slides

Merging binaries

Emitted spectrum:

$$\frac{dE_s}{d\ln f_s} = \frac{(G\pi)^{2/3}}{3} M_c^{5/3} f_s^{2/3}$$

Stochastic background:

$$\Omega_{\rm gw}(f) = \frac{(G\pi)^{2/3}}{3} \frac{f^{2/3}}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{M_c^{5/3}}{(1+z)^{1/3}}$$

Stalling binaries

Emitted power:

$$\frac{dE_s}{dt_s}(f_{\rm stall}) = \frac{32c^5}{5G} \left(\frac{GM_c}{c^3} \pi f_{\rm stall}\right)^{10/3}$$

Stochastic background:

$$\Omega_{\rm gw}(f) = \frac{1}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{dE_s}{dt_s} \left| \frac{dt_s}{dz} \right|$$