Hot-Jupiter Inflation due to deep energy deposition

Sivan Ginzburg Re'em Sari

Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

July 1, 2015

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Sivan Ginzburg, Re'em Sari

Introduction

Stellar irradiation slows cooling

- Explains
 ~ 1.3R_J
- Not enough $1.5 2.0R_J$

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Introduction

Stellar irradiation slows cooling

Explains
 ~ 1.3R_J

Gyr old planets

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Introduction

Stellar irradiation slows cooling

Explains
 ~ 1.3R_J

Extra power

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Introduction

 τ -U Plane

U ≡ aT⁴
 radiation
 τ ≡ ∫^R κρdr
 optical depth

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

ntroduction

 τ -U Plane

 U ≡ aT⁴ radiation
 τ ≡ ∫^R κρdr optical depth

Convective Interior $\frac{U}{U_c} = \left(\frac{\tau}{\tau_c}\right)^{\beta}$

Radiative Envelope $U = U_{eq} + \frac{3}{c} \frac{L_{int}}{4\pi R^2} \tau$

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

ntroduction

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

ntroduction

Hot-Jupiter Inflation

ntroduction

Cooling too Fast

Baraffe+03,Liu+08, Burrows+07

Additional Power Source¹

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

ntroduction

rradiated Planets

Additional Power

Numerical Results

Summary

Cooling too Fast

Baraffe+03,Liu+08, Burrows+07

Additional Power Source

- Power L_{dep}
- ▶ Depth τ_{dep}

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

ntroduction

rradiated Planets

Additional Power

Numerical Results

Summary

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Introduction Irradiated Planets Additional Power Numerical Results Summary

Baraffe+03,Liu+08, Burrows+07 Additional Power Source

Cooling too Fast

- Power L_{dep}
- ▶ Depth τ_{dep}

Hot-Jupiter Inflation

Introduction Irradiated Planets Additional Power Numerical Results Summary

Baraffe+03,Liu+08, Burrows+07 Additional Power Source

Cooling too Fast

- Power L_{dep}
- Depth au_{dep}

Effectively Stronger Irradiation

Cooling too Fast Baraffe+03,Liu+08, Burrows+07 Additional Power Source ► Power L_{dep}

• Depth τ_{dep}

Effectively Stronger Irradiation

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Radius Evolution

- $L_{\rm int}(T_c) \propto \frac{dT_c(t)}{dt}$
- $\Delta R(t) \propto T_c(t)$

Equilibrium Inflation

Chabrier+04 Burrows+07, Liu+08

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Introduction Irradiated Planets Additional Power Numerical Results

Summary

Radius Evolution

- $L_{\rm int}(T_c) \propto \frac{dT_c(t)}{dt}$
- $\Delta R(t) \propto T_c(t)$

Equilibrium Inflation

Chabrier+04 Burrows+07, Liu+08

Spiegel&Burrows13

- ► HD 209458b
- Still contracting

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Hot-Jupiter Inflation Sivan Ginzburg,

Re'em Sari

• $L_{int}(T_c) \propto \frac{dT_c(t)}{dt}$ • $\Delta R(t) \propto T_c(t)$ Equilibrium Inflation Chabrier+04

Radius Evolution

Burrows+07, Liu+08

Spiegel&Burrows13

- ► HD 209458b
- Still contracting

Hot-Jupiter Inflation Sivan Ginzburg,

Re'em Sari

• $L_{int}(T_c) \propto \frac{dT_c(t)}{dt}$ • $\Delta R(t) \propto T_c(t)$ Equilibrium Inflation Chabrier+04

Radius Evolution

Spiegel&Burrows13

- ► HD 209458b
- Still contracting

Numerical Results

Summary

Over Inflated Hot Jupiters

• Irradiation cannot explain $\sim 2R_J$ planets

Sivan Ginzburg, Re'em Sari

Over Inflated Hot Jupiters

• Irradiation cannot explain $\sim 2R_J$ planets

Irradiated Planets

 Reproduce previous results (Guillot+96,Arras&Bildsten06,Youdin&Mitchell10)

Analytical Model a+.

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Over Inflated Hot Jupiters

• Irradiation cannot explain $\sim 2R_J$ planets

Irradiated Planets

 Reproduce previous results (Guillot+96,Arras&Bildsten06,Youdin&Mitchell10)

Additional Energy Deposition

Fit numerical results

Analytical Model a+b=c

Hot-Jupiter Inflation

Sivan Ginzburg, Re'em Sari

Over Inflated Hot Jupiters

• Irradiation cannot explain $\sim 2R_J$ planets

Irradiated Planets

 Reproduce previous results (Guillot+96,Arras&Bildsten06,Youdin&Mitchell10)

Additional Energy Deposition

- $\blacktriangleright \ \frac{L_{\rm dep} \tau_{\rm dep}}{L_{\rm eq}} \gtrsim 1 \qquad L_{\rm dep} \gtrsim L_{\rm int}^0$
- Fit numerical results

Applications

Observational correlations (Laughlin+11, Schneider+11)

Sivan Ginzburg, Re'em Sari

Thank you!

6

DUDE, TRY

()

JUPITER HAS SUNBURN.