31st International Colloquium of the Institut d'Astrophysique de Paris From Super-Earths to Brown Dwarfs: Who's who? 25-29 August 2014, ISSI-Beijing

# Theoretical Perspectives on Super-Earths and Mini-Neptunes with a focus on Origins and Compositions of Short-Period Planets 

## Masahiro IKOMA

Department of Earth Planetary Science

## the University of TOKyo

## Who's who?




Weiss \& Marcy (2014)

* Are the intermediate planets (IPs) super-Earths or mini-Neptunes?
* A simple explanation is that IPs are rocky cores with different amounts of $\mathrm{H} / \mathrm{He}$


## Low-Density Low-Mass Planets

## A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack J. Lissauer ${ }^{1}$, Daniel C. Fabrycky ${ }^{2}$, Eric B. Ford ${ }^{3}$, William J. Borucki ${ }^{1}$, Francois Fressin ${ }^{4}$, Geoffrey W. Marcy ${ }^{5}$, Jerome A. Orosz ${ }^{6}$, Jason F. Rowe ${ }^{7}$, Guillermo Torres ${ }^{4}$, William F. Welsh ${ }^{6}$, Natalie M. Batalha ${ }^{8}$, Stephen T. Bryson ${ }^{1}$, Lars A. Buchhave ${ }^{9}$,
Douglas A. Caldwell ${ }^{7}$, Joshua A. Carter ${ }^{4}$, David Charbonneau ${ }^{4}$, Jessie L. Christiansen ${ }^{7}$, William D. Cochran ${ }^{10}$, Jean-Michel Desert ${ }^{4}$, Edward W. Dunham ${ }^{11}$, Michael N. Fanelli ${ }^{12}$, Jonathan J. Fortney ${ }^{2}$, Thomas N. Gautier II $^{13}$, John C. Geary ${ }^{4}$, Ronald L. Gilliland ${ }^{14}$, Michael R. Haas ${ }^{1}$, Jennifer R. Hall ${ }^{15}$, Matthew J. Holman ${ }^{4}$, David G. Koch ${ }^{1}$, David W. Latham ${ }^{4}$, Eric Lopez ${ }^{2}$, Sean McCauliff ${ }^{15}$, Neil Miller ${ }^{2}$, Robert C. Morehead ${ }^{3}$, Elisa V. Quintana ${ }^{7}$, Darin Ragozzine ${ }^{4}$, Dimitar Sasselov ${ }^{4}$, Donald R. Short ${ }^{6}$ \& Jason H. Steffen ${ }^{16}$


- Five low-mass planets around a Sun-like star
- All the low-mass planets are less dense than rocky objects


## Low-Density Low-Mass Planets

Observed mass-radius relationship (data from exoplanets.org)
Equilibrium Temperature [K]


Theoretical line for

## H/He 10\% +rock $90 \%$

## Theoretical line for

H/He 1\% +rock $99 \%$

- Low-mass exoplanets with short periods are so diverse in bulk composition
- Provided the large radii are due to the presence of $\mathrm{H} / \mathrm{He}$ atmospheres, the fraction of $\mathrm{H} / \mathrm{He}$ atmospheres ranges up to $\sim 10 \%$ of total planet mass


## Jupiter’s Small Core Problem



Jupiter's core is as small as < 5 Earth masses!
$\rightarrow$ super-Earth mass

Timescale of Runaway
Gas Accretion after Isolation


Isolation Core Mass [Earth=1]

Super-Earth mass is large enough for a core to be a gas giant.

## Relevant Processes

## Solid Accretion



Planetary embryos become isolated (Lissauer 1987; Kokubo \& Ida 1998)

- Local accretion is unable to form super-Earth-mass cores.

- Have to collect solids from wider regions.
$\Rightarrow$ Need for orbital migration and/or giant collision


## Dilemma

- Orbital migration of low-mass planets requires the presence of disk gas.
- If a super-Earth-mass core is formed and isolated well before disk dispersal, the core readily becomes a gas giant.

Why are there so many close-in super-Earth-mass planets?

## Relevant Processes

## Disk Dissipation

Two-Step (UV-switch) Model
Stage 1: Viscous accretion


Stage 2: Photo-evaporation


Illustration from William \& Cieza (2008)


- Disk dissipates in a few Myr
- Photo-evaporation results in quick dispersal of inner disk


## Disk Property \& Planet Mass

"Escape" parameter $\quad \lambda \equiv G M_{p} \mu / R_{p} k T_{\text {disk }}$


Embedded atmospheres of close-in low-mass planets are less bound and thus vulnerable to disk properties

## Population Synthesis

## Integrated planet formation models

Ida \& Lin $(2004,2005,2008 a b, 2010)$
Mordasini et al. (2009ab,2012abc), Alibert et al. $(2011,2013)$ etc.


Physics included

- Disk structure \& dissipation
- Solid accretion
- Gas accretion
- Orbital migration

Monte Carlo variables

- Dust/gas ratio in disk
- Initial disk mass
- Disk photoevaporation rate
- Initial semi-major axis of seed embryo


## Population Synthesis

## A recent progress in migration theory



Through back-and-forth migration, rocky planetary embryos sweep planetesimals to be super-Earth-mass planets

## Population Synthesis Bulk $\begin{gathered}\text { Bumposition }\end{gathered}$



## Missing Processes

- Subsequent (i.e., post-migration) modification to planetary composition 1. Collisional erosion

2. Post-giant-collision gas accretion 3. Photo-evaporative mass loss

## Collisional Erosion

Inamdar \& Schlichting (2015)


- So effective in removing $\mathrm{H} / \mathrm{He}$ atmosphere significantly.
- Giant collisions after disk dispersal are incompatible with the presence of low-density low-mass planets.


## Giant Collisions during Disk Dissipation

- Successive orbital migration of planetary embryos forms a compact multiple-embryo system via resonance trapping.
- Disk begins to dissipate, triggering orbital instability of the multiple-embryo system and then giant collisions
- The merged planet captures gas from the dissipating disk.




## Post-Giant-Collision Gas Accretion



Ikoma \& Hori (2012)

## Post-Giant-Collision Gas Accretion

Final Mass of Accreted Atmosphere Ikoma \& Hori (2012)


## Post-Giant-Collision Gas Accretion



## Photo-evaporative Erosion

Mass Evolution of Kepler-11b
Lopez et al. (2012)




Coupled thermal evolution and photo-evaporative mass loss Close-in low-mass planets have lost significant amounts of $\mathrm{H} / \mathrm{He}$ for billion years.

## Photo-evaporative Erosion



## Contribution of Icy Planets

- Contribution of planets accreted in cool environments may be needed.

Bodenheimer \& Lissauer (2014)

- Gravitational interaction among protoplanets are important.

Alibert et al. (2013)

- Might conflict with the presence of many cool gas giants



## Photo-evaporation of Water-Worlds

Simulation Result of UV-Driven
Photo-evaporative Mass Loss


Fate of Water-Worlds
Comparison with KOIs


- A similar evaporation valley may be detected
- There must be remnants of evaporated icy planets or evaporating icy planets.

Are icy components detected in the atmosphere?

Which is dominant, close-in low-mass planets


## Summary \& Conclusions

- Close-in low-mass exoplanets (super-Earths and miniNeptunes) are quite diverse in bulk density.
- From viewpoints of planet formation theory, the diversity cannot be explained only by rock and $\mathrm{H} / \mathrm{He}$. Contribution of ice would be needed.
- The effects of orbital migration and gravitational interaction among planetary embryos and also the condition for gas giant formation (see P31 Venturini) must be investigated in more detail.
- Important observational constraints to be obtained:
- The number of planets in regions of intermediate period and intermediate mass
- The ratio of short-period low-mass planets to intermediate-period gas giants
- Compositions of the atmospheres of close-in low-mass planets (see P19 Kawashima)

