31st International Colloquium of the Institut d'Astrophysique de Paris **From Super-Earths to Brown Dwarfs: Who's who?** 25-29 August 2014, ISSI-Beijing

Theoretical Perspectives on Super-Earths and Mini-Neptunes with a focus on Origins and Compositions of Short-Period Planets

Masahiro IKOMA

Department of Earth Planetary Science THE UNIVERSITY OF TOKYO

Low-Density Low-Mass Planets

doi:10.1038/nature09760

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack J. Lissauer¹, Daniel C. Fabrycky², Eric B. Ford³, William J. Borucki¹, Francois Fressin⁴, Geoffrey W. Marcy⁵, Jerome A. Orosz⁶, Jason F. Rowe⁷, Guillermo Torres⁴, William F. Welsh⁶, Natalie M. Batalha⁸, Stephen T. Bryson¹, Lars A. Buchhave⁹, Douglas A. Caldwell⁷, Joshua A. Carter⁴, David Charbonneau⁴, Jessie L. Christiansen⁷, William D. Cochran¹⁰, Jean-Michel Desert⁴, Edward W. Dunham¹¹, Michael N. Fanelli¹², Jonathan J. Fortney², Thomas N. Gautier III¹³, John C. Geary⁴, Ronald L. Gilliland¹⁴, Michael R. Haas¹, Jennifer R. Hall¹⁵, Matthew J. Holman⁴, David G. Koch¹, David W. Latham⁴, Eric Lopez², Sean McCauliff¹⁵, Neil Miller², Robert C. Morehead³, Elisa V. Quintana⁷, Darin Ragozzine⁴, Dimitar Sasselov⁴, Donald R. Short⁶ & Jason H. Steffen¹⁶

Low-Density Low-Mass Planets

Jupiter's Small Core Problem

Relevant Processes Solid Accretion

Dilemma

- Orbital migration of low-mass planets requires the presence of disk gas.
- If a super-Earth-mass core is formed and isolated well before disk dispersal, the core readily becomes a gas giant.

Why are there so many close-in super-Earth-mass planets?

Relevant Processes Disk Dissipation

Disk Property & Planet Mass

"Escape" parameter $\lambda \equiv GM_p \mu / R_p k T_{disk}$

Embedded atmospheres of close-in low-mass planets are less bound and thus vulnerable to disk properties

Population Synthesis

Integrated planet formation models

Ida & Lin (2004, 2005, 2008ab, 2010) Mordasini et al. (2009ab,2012abc), Alibert et al. (2011, 2013) etc.

Physics included

- Disk structure & dissipation
- Solid accretion
- Gas accretion
- Orbital migration

Monte Carlo variables

- Dust/gas ratio in disk
- Initial disk mass
- Disk photoevaporation rate
- Initial semi-major axis of seed embryo

Population Synthesis

A recent progress in migration theory

isothermal, linear (reduced)

non-isothermal, non-linear

Population Synthesis Bulk Composition

Missing Processes

- Subsequent (i.e., post-migration) modification to planetary composition
 - 1. Collisional erosion
 - 2. Post-giant-collision gas accretion
 - 3. Photo-evaporative mass loss

Collisional Erosion

Inamdar & Schlichting (2015)

- So effective in removing H/He atmosphere significantly.
- Giant collisions after disk dispersal are incompatible with the presence of low-density low-mass planets.

Giant Collisions *during* **Disk Dissipation**

- Successive orbital migration of planetary embryos forms a compact multiple-embryo system via resonance trapping.
- Disk begins to dissipate, triggering orbital instability of the multiple-embryo system and then giant collisions
 - The merged planet captures gas from the dissipating disk.

Post-Giant-Collision Gas Accretion

Ikoma & Hori (2012)

Post-Giant-Collision Gas Accretion

Post-Giant-Collision Gas Accretion

Photo-evaporative Erosion

Coupled thermal evolution and photo-evaporative mass loss Close-in low-mass planets have lost significant amounts of H/He for billion years.

Photo-evaporative Erosion

Population Synthesis by Jin et al. (2014)

Evaporation valley

See also Lopez et al. (2012) Owen & Wu (2013) Lopez & Fortney (2013)

- H/He atmospheres of < ~10% are removed readily, which results in an evaporation valley.
- Such clear deficit is NOT observed in the distribution of KOIs.

Contribution of Icy Planets

 Contribution of planets accreted in cool environments may be needed.

Bodenheimer & Lissauer (2014)

 Gravitational interaction among protoplanets are important.

50

45

40

35

30

25 20

15

10

5

0.1

Planet mass (m_{earth})

Alibert et al. (2013)

10

Cossou et al. (2014)

 Might conflict with the presence of many cool gas giants

Giant planet cores

Hot super-Earths

1

Semi-major axis [AU]

Semi-major axis (AU)

Photo-evaporation of Water-Worlds

 A similar evaporation valley may be detected
There must be remnants of evaporated icy planets or evaporating icy planets.
Kurosaki, Ikoma, & Hori (2014, A&A)

Summary & Conclusions

- Close-in low-mass exoplanets (super-Earths and mini-Neptunes) are quite diverse in bulk density.
- From viewpoints of planet formation theory, the diversity cannot be explained only by rock and H/He. Contribution of ice would be needed.
- The effects of orbital migration and gravitational interaction among planetary embryos and also the condition for gas giant formation (see P31 Venturini) must be investigated in more detail.
- Important observational constraints to be obtained:
 - The number of planets in regions of intermediate period and intermediate mass
 - The ratio of short-period low-mass planets to intermediate-period gas giants
 - Compositions of the atmospheres of close-in low-mass planets (see P19 Kawashima)