Dissipation in resonant systems: Implications of observed orbital configurations

J.-B. Delisle, J. Laskar, A. C. M. Correia

Geneva Observatory - Switzerland

June 30, 2015

Resonant/near resonant systems

- What is a resonance between 2 planets?
 - $P_2/P_1 = p/q$ (p, q integers)
 - Example: 2/1

 $2/P_1$

• Resonant or near resonant system?

Resonance width depends on m_i , e_i

Kepler near-resonant planets

Distribution of period ratio in Kepler data

- Peaks at resonances \rightarrow convergent migration $(P_2/P_1 \searrow)$
- Peaks slightly shifted to the right (Systems near but outside of resonances) → tidal dissipation?

Lissauer et al. (2011), Fabrycky et al. (2014)

Kepler near-resonant planets

- Other possible explanations for the shift:
 - protoplanetary disk planets interactions
 Rein (2012), Baruteau & Papaloizou (2013)
 - planetesimals planets interactions
 Chatterjee & Ford (2015)
 - in-situ formation of planets
 Petrovitch, Malhotra, Tremaine (2013), Xie (2014)

Why tidal dissipation?

Distribution of period ratio close to resonances (2:1 + 3:2)

Delisle, Laskar (2014)

Jean-Baptiste DELISLE (Geneva Observatory

Dissipation in resonance

June 30, 2015 5 / 12

Why tidal dissipation?

Distribution of period ratio close to resonances (2:1 + 3:2)

Evidence for tidal dissipation

- KS-tests
 - Close-in vs Farthest: 0.08%
 - Close-in vs Intermediate: 3.5%
 - Intermediate vs Farthest: 10%

Delisle, Laskar (2014)

Analytical model of resonances

• First order resonances (2/1, 3/2, etc.)

Integrable approximation is straightforward

Sessin & Ferraz-Mello (1984), Henrard et al. (1986), Wisdom (1986), Batygin & Morbidelli (2013)

• Higher order resonances (3/1, 5/2, etc.)

2 degrees of freedom (not integrable)

- New simplifying assumption

 $e_1/e_2 \approx (e_1/e_2)_{forced}$ (ecc. ratio at resonance center)

 \rightarrow Integrable pendulum-like approx.

$$H = -(I - \delta)^2 + 2R\cos(q\theta)$$

Delisle, Laskar, Correia, Boué (2012) Delisle, Laskar, Correia (2014)

Dissipative evolution in resonance

Dissipation affects the resonant motion in 2 ways

- Relative amplitude: $A = \frac{\text{Amplitude}}{\text{Width}}$
 - if $A \searrow$ Locked in resonance, $P_2/P_1 \approx p/q$
 - − if $A \nearrow$ Escape from resonance, P_2/P_1 no more locked

Migration in protoplanetary disk

 \longrightarrow Escape with $P_2/P_1 \searrow$ (convergent migration)

Observed resonant systems

constraints on disk properties

(ex: surface density profile)

Delisle, Correia, Laskar (2015), accepted to A&A

Tidal dissipation

$$\tau = \frac{T_1}{T_2} \qquad \tau_c \approx L \left(\frac{e_1}{e_2}\right)^2 \frac{4 + |k_2|(1+L)}{4L - |k_1|(1+L)} \qquad \tau_\alpha = \left(\frac{e_1}{e_2}\right)^2$$
$$L \approx \frac{m_1}{m_2} \left|\frac{k_1}{k_2}\right|^{1/3}$$

• $\tau < \tau_c$: Amplitude $\nearrow \longrightarrow$ separatrix crossing possible $-\tau < \tau_{\alpha}$: Diverging $P_2/P_1 > k_2/k_1$ EXT $P_2/P_1 < k_2/k_1$ INT $-\tau > \tau_{\alpha}$: Converging • $\tau > \tau_c$: Amplitude $\searrow \longrightarrow$ evolution close to libration center

- -q = 1: Diverging $P_2/P_1 > k_2/k_1$ EXT
- -q > 1: Staying in resonance $P_2/P_1 \approx k_2/k_1$ RES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Delisle, Laskar, Correia (2014)

Who's who? Constraints on planets nature

ex: GJ 163

Parameter	[unity]	b	С	d
$m \sin i$	$[M_\oplus]$	10.661	7.263	22.072
P	[days]	8.633	25.645	600.895
a	[AU]	0.06069	0.12540	1.02689
e		0.0106	0.0094	0.3990

Planets b, c close to 3:1 MMR (order 2)

 $\frac{P_2}{P_1} = 2.97 < 3$ Internal circulation (converging)

 $\tau_{\alpha} < \tau < \tau_c$

Delisle, Laskar, Correia (2014)

Dissipation in resonance

Who's who? Constraints on planets nature

Jean-Baptiste DELISLE (Geneva Observatory

Dissipation in resonance

June 30, 2015 11 / 12

Conclusion

- Classification of outcome of dissipative process in resonance
- Constraints on systems properties from period ratio
 - Disk properties (disk-planet interactions)
 - Planets nature (tidal dissipation efficiency)
- Analytical model
 - Better understanding of these complex process
 - First approximation of constraints
 - Need numerical simulations for precise constraints