On the origin of stellar spin-orbit angle in extrasolar systems

Gwenaël BOUÉ & Jacques LASKAR, Daniel C. FABRYCKY

31th International Colloquium of the IAP From Super-Earths to Brown Dwarfs: Who's who?

Consequence of hot Jupiter formation

• high eccentricity migration [e.g., Rasio & Ford 96, Mazeh et al. 97]

ロト (同) (三) (三) (三) の(()

Source of stellar spin-orbit angle

Consequence of hot Jupiter formation

• high eccentricity migration [e.g., Rasio & Ford 96, Mazeh et al. 97]

External torque

• presence of a binary companion [Batygin et al. 11, Batygin 12]

Consequence of hot Jupiter formation

• high eccentricity migration [e.g., Rasio & Ford 96, Mazeh et al. 97]

External torque

• presence of a binary companion [Batygin et al. 11, Batygin 12]

Stellar physics

• turbulent stellar formation [Bate et al. 10, Thies et al. 11, Fielding et al. 15]

ロトメロトメミトメミト ヨーのへの

- magnetic star-disk interaction [Lai et al. 11, Spalding & Batygin 14]
- modulation of the stellar envelope [Rogers et al. 12]

Source of stellar spin-orbit angle

Consequence of hot Jupiter formation

• high eccentricity migration [e.g., Rasio & Ford 96, Mazeh et al. 97]

External torque

• presence of a binary companion [Batygin et al. 11, Batygin 12]

Stellar physics

• turbulent stellar formation [Bate et al. 10, Thies et al. 11, Fielding et al. 15]

ロト (同) (三) (三) (三) の(()

- magnetic star-disk interaction [Lai et al. 11, Spalding & Batygin 14]
- modulation of the stellar envelope [Rogers et al. 12]

Dissipation

• tides [Lai 12]

Source of stellar spin-orbit angle

Consequence of hot Jupiter formation

• high eccentricity migration [e.g., Rasio & Ford 96, Mazeh et al. 97]

External torque

• presence of a binary companion [Batygin et al. 11, Batygin 12]

Stellar physics

• turbulent stellar formation [Bate et al. 10, Thies et al. 11, Fielding et al. 15]

- magnetic star-disk interaction [Lai et al. 11, Spalding & Batygin 14]
- modulation of the stellar envelope [Rogers et al. 12]

Dissipation

• tides [Lai 12]

From hot Jupiters to low mass planets...

ロト (同) (三) (三) (三) の(()

From hot Jupiters to low mass planets...

Source of stellar spin-orbit angle

	HJ	multies	justification
formation (HEM)	1	×	compact system
ext. torque	\checkmark	×	spin-orbit coupling strength
stellar phys.	\checkmark	\checkmark	
tidal dissip.	\checkmark	×	low planet masses

Spin-orbit and orbit-orbit couplings

notation spin-axis planet system n binary

Equations of motion

- Secular frequencies: v_1 , v_2 , v_3 , v_4 .
- Exact solution: Boué & Laskar (2006), Boué & Fabrycky (2014)

ロト (同) (三) (三) (三) の(()

Archetype 55 Cancri

5 planets in a binary system

On the stellar spin-orbit angle

method	angle	ref.
theory	50°	Kaib et al. 11
liteory	0°	Boué & Fabrycky 14
observation	70°	Bourrier & Hébrard 14
00361 Valion	undetected	Lopez-Morales et al. 14

d

Model 1: stars + disk

star parameters					
mass $m_0 [M_{\odot}]$	1				
radius $R_0 [R_\odot]$	2				
rotation period P_0 [d]	10				
Love number k_2	0.028				
moment of inertia I_0	0.09				
disk parameters					
mass [M,lup]	10				
inner radius ain [au]	0.05				
outer radius aout [au]	50				
number of rings N	100				
surface density Σ	$\propto 1/r$				
companion parameters					
mass $m_p [M_{\odot}]$	0.27				
semimajor axis ap [au]	1250				
	0.00				

Secular periods

 $P_1 \approx 6 \,\mathrm{My} \;, \quad P_2 \approx 900 \,\mathrm{My} \;, \quad P_3 \approx 10 \,\mathrm{My} \;, \quad P_4 \approx 3 \,\mathrm{Gy} \;.$

About the formation of low mass planets

Figure: Time evolution of planets formation. The largest planets have masses $33M_{\oplus}$ and $35M_{\oplus}$ in panel a) and b), respectively.

About the formation of low mass planets

Figure: Time evolution of planets formation. The largest planets have masses $33M_{\oplus}$ and $35M_{\oplus}$ in panel a) and b), respectively.

timescale $\lesssim 0.1$ Myr

Model 1: stars + disk

star parameters					
mass $m_0 [M_{\odot}]$	1				
radius $R_0 [R_\odot]$	2				
rotation period P_0 [d]	10				
Love number k_2	0.028				
moment of inertia I_0	0.09				
disk parameters					
mass [M,lup]	10				
inner radius ain [au]	0.05				
outer radius aout [au]	50				
number of rings N	100				
surface density Σ	$\propto 1/r$				
companion parameters					
mass $m_p [M_{\odot}]$	0.27				
semimajor axis ap [au]	1250				
	0.00				

Secular periods

 $P_1 \approx 6 \,\mathrm{My} \;, \quad P_2 \approx 900 \,\mathrm{My} \;, \quad P_3 \approx 10 \,\mathrm{My} \;, \quad P_4 \approx 3 \,\mathrm{Gy} \;.$

Model 1: stars + disk

star parameters				
$\begin{array}{l} \max s \ m_0 \ [M_\odot] \\ \text{radius} \ R_0 \ [R_\odot] \\ \text{rotation period} \ P_0 \ [d] \\ \text{Love number} \ k_2 \\ \text{moment of inertia} \ I_0 \end{array}$	1 2 10 0.028 0.09			
disk parameters	;			
mass $[M_{Jup}]$ inner radius a_{in} [au] outer radius a_{out} [au] number of rings N surface density Σ	$10 \\ 0.05 \\ 50 \\ 100 \\ \propto 1/r$			
companion parameters				
mass $m_p [M_{\odot}]$ semimajor axis a_p [au] eccentricity e_p	0.27 1250 0.93			

Secular periods

 $P_1 \approx 6 \text{ My}$, $P_2 \approx 900 \text{ My}$, $P_3 \approx 10 \text{ My}$, $P_4 \approx 3 \text{ Gy}$.

Model 2: stars + disk + inner planet

・御をえばをえばを ほう うんの

Model 3: stars + 5 planets

	star parameters					
mass radiu rotati Love mom	0.905 0.943 42.7 0.028 0.09					
	planet pa	rameter	S			
mas	mass [M _{Jup}] sma [au]					
m_e	0.027	ae	0.016			
m_b	0.83	ab	0.11			
m_c	0.17	a_c	0.24			
m_f	<i>m</i> _f 0.16 <i>a</i> _f					
m_d	m _d 3.82 a _c					
	companion parameters					
mass semi ecce	0.27 1250 0.93					

)

Secular periods

 $P_1 \approx 1 \text{ My}$, $P_2 \approx 800 \text{ My}$, $P_3 \approx 35 \text{ My}$, $P_4 \approx 11 \text{ Gy}$.

ロトスロトメミトメミト、ヨークへの

	\backslash	\ s		U		Ν		
٢)							
	/	/	1		1			

star parameters							
mass radius rotatio Love mome	0.905 0.943 42.7 0.028 0.09						
	planet parameters						
mass	mass [M _{Jup}] sma [
m_S	0.30	a_S	9.5				
m_U	m _U 0.05 a _U						
m_N	m _N 0.05 a _N						
companion parameters							
mass semir eccer	0.27 1250 0.93						

Secular periods

 $\label{eq:P1} P_1 \approx 1 \, \mathrm{My} \;, \quad P_2 \approx 900 \, \mathrm{My} \;, \quad P_3 \approx 11 \, \mathrm{My} \;, \quad P_4 \approx 3 \, \mathrm{Gy} \;.$

Conclusion

Spin-orbit origin

consequence of hot Jupiter formation

ロトメロトメヨトメヨト ヨーのへぐ

- external torque
- stellar physics
- tidal dissipation

Conclusion

Spin-orbit origin

- consequence of hot Jupiter formation
- external torque
- stellar physics
- tidal dissipation

The 55 Cnc case

spin-orbit misalignment ↔ stellar physics

ロト (同) (三) (三) (三) の(()

Conclusion

Spin-orbit origin

- consequence of hot Jupiter formation
- external torque
- stellar physics
- tidal dissipation

The 55 Cnc case

spin-orbit misalignment ↔ stellar physics

Perspectives

• multi transits + obliquity ⇒ constraints on stellar physics