

Andrzej Niedzielski

Toruń Center for Astronomy, Nicolaus Copernicus University in Toruń, Poland

1992 – Wolszczan & Frail - first planet around other star PSR B1257+12 b (c, d).

1995 – Mayor & Queloz - first planet around a solar-type star 51 Peg b.

2002 – Frink et al. - first planet around a giant – I Dra b.

K giants are RV variable stars (Walker et al. 1989 ApJ 343, 21) (30-300 m/s rms)

Short period variations are due to p-mode oscillation (Hatzes & Cochran 1998). Periods and amplitudes may be estimated from Kjeldsen & Bedding (1995) scaling relations:

amplitudes (~L/M): of up to ~200 ms⁻¹ periods (~(R²(T_{eff})^{1/2})/M): ~hours-days

When unresolved introduce noise (jitter) to RV.

Long-period variations may be due to: non-radial pulsations (?), rotation-induced activity (spots), low-mass companions.

Evolutionary track overlap. Stellar parameters (mass, age) and evolutionary stage uncertain.

Why bother?

- Planets around $M/M_{\odot} > 1$ stars.
- Star-planet interactions.
- The future of the Solar System.

The PennState-Toruń Planet Search (PTPS) sample.

BD+ 49 828 b

Parameter	BD+49 828	HD 95127	HD 216536
V [mag] Spectral type $\pi \text{[mas]}$	9.38 ± 0.02 K0 —	8.15 ± 0.01 K0 3.06 ± 0.99	9.23 ± 0.02 K0
$\begin{array}{c} T_{\rm eff}[{\rm K}] \\ \log g \\ [{\rm Fe}/{\rm H}] \\ v_{\rm rot}\sin i_{\star}[{\rm kms^{-1}}] \\ \log L_{\star}/L_{\odot} \\ M_{\star}/{\rm M}_{\odot} \\ R_{\star}/{\rm R}_{\odot} \\ \log({\rm Age})[{\rm yr}] \end{array}$	$\begin{array}{c} 4943 \pm 30 \\ 2.85 \pm 0.09 \\ -0.19 \pm 0.06 \\ 1.7 \pm 0.8 \\ 1.47 \pm 0.13 \\ 1.52 \pm 0.22 \\ 7.6 \pm 1.3 \\ 9.37 \pm 18 \end{array}$	$\begin{array}{c} 4218 \pm 69 \\ 1.78 \pm 0.3 \\ -0.18 \pm 0.05 \\ 2.6 \pm 0.7 \\ \hline 2.28 \pm 0.38 \\ 1.20 \pm 0.22 \\ 20 \pm 9 \\ 9.74 \pm 0.27 \end{array}$	$\begin{array}{c} 4639 \pm 45 \\ 2.36 \pm 0.21 \\ -0.17 \pm 0.09 \\ 2.6 \pm 0.5 \\ 1.80 \pm 0.21 \\ 1.36 \pm 0.38 \\ 12.5 \pm 4.0 \\ 9.58 \pm 0.33 \end{array}$
$\frac{P(\sin i_{\star})^{-1} \text{ [days]}}{K_{\text{osc}} \text{ [m s}^{-1}\text{]}}$ $\frac{P_{\text{osc}} \text{ [days]}}{P_{\text{osc}} \text{ [days]}}$	$226 \pm 114 \\ 4.5^{+3.1}_{-1.8} \\ 0.13^{+0.08}_{-0.05}$	$\begin{array}{c} 389 \pm 204 \\ 37^{+79}_{-25} \\ 1.08^{+1.73}_{-0.81} \end{array}$	$\begin{array}{c} 243 \pm 91 \\ 11^{+15}_{-6} \\ 0.39^{+0.56}_{-0.25} \end{array}$
Parameter	BD+49 828 b	HD 95127 b	HD 21653 b
$\begin{array}{l} p \ [d] \\ T_0 \ [MJD] \\ K \ [m \ s^{-1}] \\ e \\ \omega \ [deg] \\ m_2 \sin i \ [M_J] \\ a \ [AU] \\ V_0 \ [m \ s^{-1}] \\ \sqrt{\chi_{\nu}^2} \\ \sigma_{\rm RV} \ [m \ s^{-1}] \\ jitter \ [m \ s^{-1}] \\ N_{\rm obs} \end{array}$	$\begin{array}{c} 2590^{+300}_{-180} \\ 55470^{+200}_{-170} \\ 18.8^{+6.2}_{-2.0} \\ 0.35^{+0.24}_{-0.10} \\ 170^{+32}_{-30} \\ 1.6^{+0.4}_{-0.2} \\ 4.2^{+0.32}_{-0.2} \\ 1.1^{+1.4}_{-0.5} \\ 1.35 \\ 11.6 \\ 4.44^{+0.35}_{-1.00} \\ 42 \end{array}$	$\begin{array}{r} 482^{+5}_{-5} \\ 53200^{+50}_{-50} \\ 116^{+16}_{-9} \\ 0.11^{+0.15}_{-0.06} \\ 40^{+37}_{-40} \\ 5.01^{+0.61}_{-0.44} \\ 1.28^{+0.01}_{-0.01} \\ -10.5^{+3.1}_{-2.3} \\ 1.14 \\ 50.9 \\ 47.5 \\ 41 \end{array}$	$\begin{array}{c} 148.6^{+0.7}_{-0.7} \\ 53587^{+11}_{-11} \\ 50^{+8}_{-4} \\ 0.38^{+0.12}_{-0.10} \\ 270^{+21}_{-20} \\ 1.47^{+0.20}_{-0.02} \\ 0.609^{+0.002}_{-0.002} \\ -4.9^{+0.7}_{-2.1} \\ 1.29 \\ 23.0 \\ 17.9 \\ 47 \end{array}$

HD 95127 b

Parameter	BD+49 828	HD 95127	HD 216536
V [mag]	9.38 ± 0.02	8.15 ± 0.01	9.23 ± 0.02
Spectral type	0.00 ± 0.02	K_0	1.20 ± 0.02
π[mas]		3.06 ± 0.00	
$\frac{\pi [\text{IIIas}]}{T = [K]}$	4043 ± 30	3.00 ± 0.93 4218 ± 60	4630 ± 45
	4945 ± 50	4210 ± 09 1 78 ± 0 2	4039 ± 40
$\log g$	2.60 ± 0.09	1.70 ± 0.3	2.30 ± 0.21
[re/n]	-0.19 ± 0.00	-0.18 ± 0.03	-0.17 ± 0.09
$v_{\rm rot} \sin i_{\star} [{\rm Kms^{-1}}]$	1.7 ± 0.8	2.0 ± 0.7	2.0 ± 0.0
$\log L_{\star}/L_{\odot}$	1.47 ± 0.13	2.28 ± 0.38	1.80 ± 0.21
M_{\star}/M_{\odot}	1.52 ± 0.22	1.20 ± 0.22	1.36 ± 0.38
$R_{\star}/\mathrm{R}_{\odot}$	7.6 ± 1.3	20 ± 9	12.5 ± 4.0
$\log (Age) [yr]$	9.37 ± 18	9.74 ± 0.27	9.58 ± 0.33
$P\left(\sin i_{\star}\right)^{-1}$ [days]	226 ± 114	389 ± 204	243 ± 91
$K_{\rm osc} [{\rm ms^{-1}}]$	$4.5^{+3.1}_{-1.8}$	37^{+79}_{-25}	11^{+15}_{-6}
$P_{\rm osc}$ [days]	$0.13_{-0.05}^{+0.08}$	$1.08^{+1.73}_{-0.81}$	$0.39_{-0.25}^{+0.56}$
Parameter E	3D+49 828 b	HD 95127 b	HD 21653 b
p [d]	2590^{+300}_{-180}	482^{+5}_{-5}	$148.6^{+0.7}_{-0.7}$
T_0 [M.ID]	55470^{+200}_{-150}	53200^{+50}	53587^{+11}
$K [{\rm m \ s}^{-1}]$	$18 8^{+6.2}$	116^{+16}	50^{+8}
	$0.25^{+0.24}$	0.11 ± 0.15	0.28 ± 0.12
	$0.33_{-0.10}$	$0.11_{-0.06}$	$0.30_{-0.10}$
ω [deg]	$170_{-30}^{+0.4}$	40_{-40}^{+10}	270_{-20}^{+}
$m_2 \sin i [M_J]$	$1.6^{+0.4}_{-0.2}$	$5.01^{+0.01}_{-0.44}$	$1.47_{-0.12}^{+0.20}$
a [AU]	$4.2^{+0.32}_{-0.2}$	$1.28^{+0.01}_{-0.01}$	$0.609^{+0.002}_{-0.002}$
$V_0 \; [{\rm m \; s^{-1}}]$	$1.1^{+1.4}_{-0.5}$	$-10.5^{+3.1}_{-2.3}$	$-4.9^{+0.7}_{-2.1}$
$\sqrt{\chi^2_{ u}}$	1.35	1.14	1.29
$\sigma_{\rm RV} [{\rm ms^{-1}}]$	11.6	50.9	23.0
jitter $[m s^{-1}]$	$4.44^{+0.35}_{-1.00}$	47.5	17.9
Nobs	$42^{-1.00}$	41	47

HD 216536 b

Parameter	BD+49 828	HD 95127	HD 216536
V [mag]	9.38 ± 0.02	8.15 ± 0.01	9.23 ± 0.02
Spectral type	K0	K0	K0
π [mas]		3.06 ± 0.99	_
T _{eff} [K]	4943 ± 30	4218 ± 69	4639 ± 45
$\log q$	2.85 ± 0.09	1.78 ± 0.3	2.36 ± 0.21
[Fe/H]	-0.19 ± 0.06	-0.18 ± 0.05	-0.17 ± 0.09
$v_{\rm rot} \sin i_{\star} [{\rm kms^{-1}}]$	1.7 ± 0.8	2.6 ± 0.7	2.6 ± 0.5
$\log L_{\star}/L_{\odot}$	1.47 ± 0.13	2.28 ± 0.38	1.80 ± 0.21
$M_{\star}/\mathrm{M}_{\odot}$	1.52 ± 0.22	1.20 ± 0.22	1.36 ± 0.38
$R_{\star}/\mathrm{R}_{\odot}$	7.6 ± 1.3	20 ± 9	12.5 ± 4.0
$\log (Age) [yr]$	9.37 ± 18	9.74 ± 0.27	9.58 ± 0.33
$P(\sin i_{\star})^{-1}$ [days]	226 ± 114	389 ± 204	243 ± 91
$K_{\rm osc} [{\rm ms^{-1}}]$	$4.5^{+3.1}_{-1.8}$	37^{+79}_{-25}	11^{+15}_{-6}
$P_{\rm osc}$ [days]	$0.13_{-0.05}^{+0.08}$	$1.08^{+1.73}_{-0.81}$	$0.39_{-0.25}^{+0.56}$
Parameter B	D+49 828 b	HD 95127 b	HD 21653 b
p [d]	2590^{+300}_{-180}	482^{+5}_{-5}	$148.6^{+0.7}_{-0.7}$
T_0 [MJD]	55470^{+200}_{-170}	53200^{+50}_{-50}	53587^{+11}_{-11}
$K [{\rm m \ s^{-1}}]$	$18.8^{+6.2}_{-2.0}$	116^{+16}_{-9}	50^{+8}_{-4}
e	$0.35^{+0.24}_{-0.10}$	$0.11^{+0.15}_{-0.06}$	$0.38^{+0.12}_{-0.10}$
$\omega [\mathrm{deg}]$	170^{+32}_{-30}	40^{+37}_{-40}	270^{+21}_{-20}
$m_2 \sin i [M_1]$	$1.6^{+0.4}_{-0.2}$	$5.01^{+0.61}_{-0.44}$	$1.47^{+0.20}_{-0.12}$
a [AU]	$4.2^{+0.32}$	$1.28^{+0.01}_{-0.01}$	$0.609^{+0.002}_{-0.002}$
$V_0 [{\rm m \ s}^{-1}]$	$1.1^{+1.4}_{-0.5}$	$-10.5^{+3.1}_{-3.2}$	$-4.9^{+0.7}$
$\sqrt{\frac{\sqrt{2}}{2}}$	1.35	$10.0_{-2.3}$ 1 14	$1.0_{-2.1}$ 1 20
$\sqrt{\lambda \nu}$ $\sigma_{\rm DV}$ [m s ⁻¹]	11.6	50.9	23.0
$V_{\rm RV}$ [ms]	$4 44^{\pm 0.35}$	17 5	17.0
	42	41.J	11.3
¹ vobs	42	41	41

TYC 1422 614 1 b, c

V [mag]	10.21	Perryman & ESA (1997)
B-V [mag]	0.95 ± 0.085	Perryman & ESA (1997)
$(B-V)_0$ [mag]	0.997	Zieliński et al. (2012)
M_V [mag]	0.81	Zieliński et al. (2012)
T_{eff} [K]	4806 ± 45	Zieliński et al. (2012)
logg	2.85 ± 0.18	Zieliński et al. (2012)
[Fe/H]	-0.20 ± 0.08	Zieliński et al. (2012)
RV [kms ⁻¹]	37.368 ± 0.027	Zieliński et al. (2012)
$v_{rot}^{CCF} \sin i_{\star} [kms^{-1}]$	1.4 ± 0.7	Nowak (2012)
A(Li)	< 1.1	Adamów et al. (2014)
M/M_{\odot}	1.15±0.18	this work
M/M_{\odot} log(L/L _{\odot})	1.15±0.18 1.35±0.16	this work this work
$\begin{array}{c} M/M_\odot\\ log(L/L_\odot)\\ R/R_\odot \end{array}$	1.15±0.18 1.35±0.16 6.85±1.38	this work this work this work
$\begin{array}{l} M/M_{\odot} \\ log(L/L_{\odot}) \\ R/R_{\odot} \\ log age [yr] \end{array}$	$\begin{array}{c} 1.15 \pm 0.18 \\ 1.35 \pm 0.16 \\ 6.85 \pm 1.38 \\ 9.77 \pm 0.22 \end{array}$	this work this work this work this work
$\begin{array}{c} M/M_{\odot} \\ log(L/L_{\odot}) \\ R/R_{\odot} \\ log age [yr] \\ d [pc] \end{array}$	$\begin{array}{c} 1.15 \pm 0.18 \\ 1.35 \pm 0.16 \\ 6.85 \pm 1.38 \\ 9.77 \pm 0.22 \\ 759 \pm 181 \end{array}$	this work this work this work this work calculated from M _V
$\begin{array}{c} M/M_{\odot} \\ log(L/L_{\odot}) \\ R/R_{\odot} \\ log age [yr] \\ d [pc] \\ V_{osc} [ms^{-1}] \end{array}$	$\begin{array}{c} 1.15 \pm 0.18 \\ 1.35 \pm 0.16 \\ 6.85 \pm 1.38 \\ 9.77 \pm 0.22 \\ 759 \pm 181 \\ 4.555 ^{+3.718}_{-1.993} \end{array}$	this work this work this work this work calculated from M _V this work

reference

value

Parameter

Parameter	TYC 1422-614-1 b	ТҮС 1422-614-1 с
P (days)	$198.40_{-0.42}^{+0.42}$	$559.3^{+1.2}_{-1.2}$
T_0 (MJD)	53236^{+25}_{-22}	53190_{-30}^{+30}
$K ({\rm m}{\rm s}^{-1})$	$82.0^{+7.0^{-2}}_{-5.1}$	$233.0^{+4.5}_{-4.0}$
е	$0.06_{-0.02}^{+0.06}$	$0.048^{+0.020}_{-0.014}$
ω (deg)	50.0^{+50}_{-43}	130^{+20}_{-20}
$m_2 \sin i (M_J)$	2.5 ± 0.4	10 ± 1
a (AU)	0.69 ± 0.03	1.37 ± 0.06
$V_0 ({\rm m}~{\rm s}^{-1})$	-68	$.2^{+2.0}_{-2.2}$
offset (m s^{-1})	3775	$58_{-6.0}^{+6.0}$
$\sigma_{\rm jitter} ({\rm m \ s^{-1}})$	12.9	$9^{+1.4}_{-1.2}$
$\sqrt{\chi_{\nu}^2}$	1.	64
$\sigma_{\rm RV}~({\rm m~s^{-1}})$	18	.94
Nobs	8	6

Data from **HET** and **Harps-N**

Niedzielski, Villaver et al. 2015

Jupiter-mass planets may be easly detected

Inventory of known systems around evolved stars

Parameter	M_{\star} range	dwarfs	subgiants	giants	bright giants
N_{planet}	$12~\mathrm{M}_{\odot}$	267	73	23	9
prance	all	458	77	41	14
	$1-2 M_{\odot}(RV)$	138	60	22	9
	all(RV)	236	64	40	14

exoplanet.eu

Properties of planets around evolved stars

No Hot Jupiters, no Earth-like planets (yet?)

Planets around massive stars are more frequent. (Lovis & Mayor 2007, Johnson et al. 2007, Kennedy & Kenyon 2008, Johnson et al. 2010)

No planets within a<0.6 AU (primordial or due to engulfment?). (Villaver & Livio 2007, 2009, Johnson et al. 2007, Burkert & Ida 2007, Sato 2008, Currie 2009, Kunitomo et al. 2011)

Stellar mass – planetary system mass relation. (Lovis & Mayor 2007, Bowler et. 2010)

No planet occurrence – metallicity relation (?). (Pasquini et al. 2008, Zieliński et al. 2009, Ghezzi et al. 2010, Mortier et al. 2013)

Brown dwarfs more common than around MS stars (Mitchell et al. 2013; Niedzielski et al. 2013)

Brown dwarfs around evolved stars more common than around MS stars:

about a dozen out of ~60 companions in BD mass range

BD occurence ratio around giants >1%. No desert?

significant increase of average companion mass for evolved stars

Parameter	M_{\star} range	dwarfs		subgiants		giants		bright giants	
		mean	σ	mean	σ	mean	σ	mean	σ
		median		median		median		median	
$m_P sini/m_J$	all	2.046	0.147	2.702	0.399	6.391	0.987	7.798	1.186
		0.955		1.800		4.500		6.300	
	$1\text{-}2~\mathrm{M}_{\odot}$	2.459	0.212	2.705	0.416	4.557	0.592	7.688	0.854
_		1.308		1.800		3.200		7.800	
	$\operatorname{all}(\mathrm{RV})$	2.250	0.200	2.956	0.467	6.533	1.001	7.798	1.186
		1.135		1.850		4.900		6.300	
-	$1-2 M_{\odot}(RV)$	2.532	0.256	2.977	0.492	4.731	0.592	7.688	0.854
		1.658		1.850		3.260		7.800	

Parameter	M_{\star} range	dwarfs		subgiants		giants		bright giants	
		mean	σ	mean	σ	mean	σ	mean	σ
		median		median		median		median	
$m_P sini/m_J$	all	2.046	0.147	2.702	0.399	6.391	0.987	7.798	1.186
		0.955		1.800		4.500		6.300	
	$1-2 \mathrm{M}_{\odot}$	2.459	0.212	2.705	0.416	4.557	0.592		0.854
_		1.308		1.800		3.200		7.800	
	$\operatorname{all}(\mathrm{RV})$	2.250	0.200	2.956	0.467	6.533	1. 01	7.798	1.186
		1.135		1.850		4.900		6.300	
	$1-2 M_{\odot}(RV)$	2.532	0.256	2.977	0.492	4.731	0.5. ?	7.688	0.854
		1.658		1.850		3.260		1.000	

$m_P \sin i \simeq 8 M_J \rightarrow m_P \simeq 13 M_J$

Niedzielski, Wolszczan et al. 2015

exoplanet.eu

Why the planetary mass increases?

Jean Schneider's exoplanet encyclopedia too kind for us?

RV precision good enough?

Stellar jitter prevents low-mass planet detection?

Stellar masses overestimated (Lloyd 2011)? ... or is it a selection effect?

Stellar mass overestimated or selection effect?

Parameter	M_{\star} range	dwarfs		subgiants		giants		bright giants	
		mean median	σ	mean median	σ	mean median	σ	mean median	σ
$m_P sini/m_J$	all	2.046	0.147	2.702	0.399	6.391	0.987	7.798	1.186
	1016	0.955	0.010	1.800	0 410	4.500	0 500	6.300	
$1-2 \mathrm{M}_{\odot}$ all(RV)	$1-2~{ m M}_{\odot}$	2.459 1 308	0.212	2.705 1.800	0.416	4.557 3.200	0.592	7.688	0.854
	$\operatorname{all}(\mathrm{RV})$	2.250	0.200	2.956	0.467	6.533	1.001	7.798	1.186
		1.135		1.850		4.900		6.300	
	$1-2 \mathrm{M}_{\odot}(\mathrm{RV})$	2.532	0.256	2.977	0.492	4.731	0.592	7.688	0.854
		1.658		1.850		3.260		7.800	
M_{\star}/M_{\odot}	all	1.039	0.011	1.428	0.027	1.870	0.090	1.464	0.120
, _		1.031		1.450		1.900		1.395	
	$1\text{-}2~\mathrm{M}_{\odot}$	1.179	0.009	1.453	0.025	1.499	0.060	1.457	0.084
	_	1.140		1.470		1.500		1.400	
	$\operatorname{all}(\mathrm{RV})$	0.997	0.015	1.446	0.031	1.885	0.091	1.464	0.120
		1.030		1.475		1.900		1.395	
	$1-2 M_{\odot}(RV)$	1.140	0.010	1.478	0.028	1.507	0.062	1.457	0.084
		1.100		1.480		1.500		1.400	

Stellar mass overestimated or selection effect?

Conclusions:

YES - masses for some giants may be overestimated.

NO - it will not lower companion masses much.

Evolved stars indeed host more massive planets or BDs.

BUT

what is the role of stellar mass-loss? what is actuall precision of various RV planet searches?