

Transiting Exoplanet Survey Satellite TESS: Discovering New Earths and Super-Earths in the Solar Neighborhood

George Ricker

31st International Colloquium From Super-Earths to Brown Dwarfs: Who's Who? Institut d'Astrophysique de Paris 29 June 2015

TESS Institutional Partners

TESS Science Team

So Many Stars...So Little Time

Primary Goal: Discover Transiting Earths and Super-Earths Orbiting Bright, Nearby Stars

- Rocky Planets & Water Worlds
- Habitable Planets

Discover the "Best" ~1000 Small Exoplanets

- "Best" Means "Readily Characterizable"
 - Bright Host Stars
 - Measurable Mass & Atmospheric Properties
- Present: <u>Only 3</u> small transiting exoplanets orbiting bright hosts are known

Large Area Survey of Bright Stars

- Sun-like stars: $I_c \leq 2$ to $I_c = 12$ magnitude
- *M* dwarfs known within ~60 parsecs ($I_c \leq 14$)
- "All sky" observations in 2 years:
 - > 200,000 target stars at <2 min cadence
 - > 20,000,000 stars in full frames at 30 min cadence

Launch in August 2017

TESS Stars Are Brighter than Kepler Stars

- How do we arrange for brighter stars?
 - Two ways...

- Increase solid angle coverage
 - $\Omega_{TESS} \simeq 400 \ \Omega_{Kepler}$

- Number of accessible bright stars increased by same factor
- Select stars that are much closer
 - TESS: ~10² light-yr
 - Kepler: ~10³ light-yr

1/R² dependence means TESS stars are ~100 times brighter on average

2-minute cadence for >200,000 stars

prioritizing detectability of small planets

simulated images by Zach Berta-Thompson

camera: 24 degrees

one camera: 24 degrees

TRANSITING EXOPLANET SURVEY SATELLITE

TESS's Novel High Orbit

Uninterrupted viewing for >95% of time

Orbital Periods: TESS = 13.7 days Moon = 27.4 days ⇒ 2:1 Resonance ⇒ 90° Phasing

LL Deep Depletion CCDs (Assembly by: GL Scientific)

Ricker et al. (2014)

Quantum Efficiency of BI CCID-80

TESS Engineering Model Camera at MKI

TESS Wide FOV CCD Camera Prototype

Photometric Noise in 1 Hour

Photometric Noise in 1 Hour **10⁵** 1% 10⁴ $\sigma ~[{\rm ppm}~{\rm hr}^{1/2}]$ for 16th mag. 10³ 10² 10^{1} 6 10 12 14 16 8 Apparent Magnitude $[I_C]$

Simulated TESS detections

Ecliptic Coordinates

Sullivan et al. (arXiv:1506.08845)

Detectable planets around 200,000 pre-selected stars

Detectable planets around **20,000,000 stars in full images**

The Predicted TESS Yield

Sullivan et al. (arXiv:1506.08845)

The Predicted TESS Yield

TESS — Discovering New Earths and Super-Earths in the Solar Neighborhood

The Predicted TESS Yield

Sullivan et al. (arXiv:1506.08845)

* 3rd "Bonus Year" of Survey:

Contingent on residual funds remaining from TESS mission reserves

** TESS itself (and the orbit) should be operable for more than a decade

Interacting with Other Initiatives and Missions:

- Providing for Non-Exoplanet Targets in TESS FFIs
- Coordinating with Gnd Followup and TESS GO's
- Partnering with K2 and CHEOPS
- Providing Prime Followup Targets (JWST, ELTs)
- Providing for Asteroseismology:
 - ~15,000 targets @ 2 min cadence
 - ~1500 very bright targets @ 20 sec cadence (new mode)
- Planning for Extended Mission(s):
 - Repeat survey in a single hemisphere?
 - Concentrate on an ecliptic pole?
 - Concentrate on the ecliptic plane?
 - ~5 x 72 day durations; comparable to ~ 100 K2 pointings

Interacting with Other Initiatives and Missions:

- Providing for Non-Exoplanet Targets in TESS FFIs
- Coordinating with Gnd Followup and TESS GO's
- Partnering with K2 and CHEOPS
- Providing Prime Followup Targets (JWST, ELTs)
- Providing for Asteroseismology:
 - ~15,000 targets @ 2 min cadence
 - ~1500 very bright targets @ 20 sec cadence (new mode)
- Planning for Extended Mission(s):
 - Repeat survey in a single hemisphere?
 - Concentrate on an ecliptic pole?
 - Concentrate on the ecliptic plane?
 - ~5 x 72 day durations; comparable to ~ 100 K2 pointings

