Ab initio equations of states for planetary and exoplanetary modeling

S. Mazevet

LUTH, UMR 8102, Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon CEA, DAM, DIF, F91297 Arpajon

From Super Earth to Brown dwarfs: who's who, Paris June 2015

Planetary interiors: 1-D hydrostatic modeling + EOS of a few elements

- Jupiter, Saturn: H, He 40Mbar, 20000K, Fe/MgSiO₃ 70Mbar, 20000K
- Neptune, Uranus : H₂O, NH₃, CH₄ 6Mbar-7000K, MgSiO₃ 10Mbar-7000K
- Mercury, Venus, Earth, Mars: Fe 5Mbar-7000K, MgSiO₃ 1Mbar-3000K

These EOS are mostly unknown over this large $\left(P,T
ight)$ domain

Planetary interiors: 1-D hydrostatic modeling + EOS of a few elements

- Jupiter, Saturn: H, He 40Mbar, 20000K, Fe/MgSiO₃ 70Mbar, 20000K
- Neptune, Uranus : H₂O, NH₃, CH₄ 6Mbar-7000K, MgSiO₃ 10Mbar-7000K
- Mercury, Venus, Earth, Mars: Fe 5Mbar-7000K, MgSiO₃ 1Mbar-3000K

These EOS are mostly unknown over this large $\left(P,T
ight)$ domain

Planetary interiors: 1-D hydrostatic modeling + EOS of a few elements

- Jupiter, Saturn: H, He 40Mbar, 20000K, Fe/MgSiO₃ 70Mbar, 20000K
- Neptune, Uranus : H₂O, NH₃, CH₄ 6Mbar-7000K, MgSiO₃ 10Mbar-7000K
- Mercury, Venus, Earth, Mars: Fe 5Mbar-7000K, MgSiO₃ 1Mbar-3000K

These EOS are mostly unknown over this large (P,T) domai

Planetary interiors: 1-D hydrostatic modeling + EOS of a few elements

- Jupiter, Saturn: H, He 40Mbar, 20000K, Fe/MgSiO₃ 70Mbar, 20000K
- Neptune, Uranus : H₂O, NH₃, CH₄ 6Mbar-7000K, MgSiO₃ 10Mbar-7000K
- Mercury, Venus, Earth, Mars: Fe 5Mbar-7000K, MgSiO₃ 1Mbar-3000K

These EOS are mostly unknown over this large $\left(P,T\right)$ domain

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

Only mass en radius

- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

Broad diversity of exoplanets discovered: size, composition,...

- Only mass en radius
- Some exoplanets are bigger than Jupiter or Earth: factor of 10 or more
- CHEOPS, PLATO: Neptune and Earth like planets
- New EOS for H₂O, Fe, MgSiO₃ up to 20Mbar
- Core of giants: 1000Mbar range

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

In Jupiter's atmosphere, hydrogen is a molecular gas

- Hydrogen has at least three known solid phases.
- In P and T hydrogen dissociates and ionizes,...
- First prediction for metallic hydrogen in 1920 (15GPa)
- How and where is critical for planetary models
- Not directly accessible experimentally

Ab initio simulations provide complete EOS for planetary conditions

bservator

Light elements: In collaboration with G. Chabrier CRAL Lyon

- Hydrogen: L. Caillabet et al. PRE 2011, PRL 2012.
- Helium and hydrogen-helium mixture F. Soubiran et al. PRB 2013.
- Water: A. Licari et al. in writing
- see also work by Militzer et al. and Redmer et al.

Iron alloys and silicates ANR PlanetLab: OBS/LULI/CEA/IMPMC

- Iron: G. Morard et al. HEDP 2011, J. Bouchet et al. PRB 2013.
- SiO₂: S. Mazevet *et al.* Phys. Rev. B 2015
- MgO/MgSiO₃ R. Musella *et al.* in writing
- Validated using high energy laser exp.: LULI, LCLS, LIL,...

Method validated experimentally on a limited (P,T) domain but with predictive capabilities

Light elements: In collaboration with G. Chabrier CRAL Lyon

- Hydrogen: L. Caillabet et al. PRE 2011, PRL 2012.
- Helium and hydrogen-helium mixture F. Soubiran et al. PRB 2013.
- Water: A. Licari et al. in writing
- see also work by Militzer et al. and Redmer et al.

Iron alloys and silicates ANR PlanetLab: OBS/LULI/CEA/IMPMC

- Iron: G. Morard et al. HEDP 2011, J. Bouchet et al. PRB 2013.
- SiO₂: S. Mazevet *et al.* Phys. Rev. B 2015
- MgO/MgSiO₃ R. Musella *et al.* in writing
- Validated using high energy laser exp.: LULI, LCLS, LIL,...

Method validated experimentally on a limited (P,T) domain but with predictive capabilities

Light elements: In collaboration with G. Chabrier CRAL Lyon

- Hydrogen: L. Caillabet et al. PRE 2011, PRL 2012.
- Helium and hydrogen-helium mixture F. Soubiran et al. PRB 2013.
- Water: A. Licari et al. in writing
- see also work by Militzer et al. and Redmer et al.
- Iron alloys and silicates ANR PlanetLab: OBS/LULI/CEA/IMPMC
 - Iron: G. Morard et al. HEDP 2011, J. Bouchet et al. PRB 2013.
 - SiO₂: S. Mazevet et al. Phys. Rev. B 2015
 - MgO/MgSiO₃ R. Musella *et al.* in writing
 - Validated using high energy laser exp.: LULI, LCLS, LIL,...

Method validated experimentally on a limited (P,T) domain but with predictive capabilities

toire

Light elements: In collaboration with G. Chabrier CRAL Lyon

- Hydrogen: L. Caillabet et al. PRE 2011, PRL 2012.
- Helium and hydrogen-helium mixture F. Soubiran et al. PRB 2013.
- Water: A. Licari et al. in writing
- see also work by Militzer et al. and Redmer et al.
- Iron alloys and silicates ANR PlanetLab: OBS/LULI/CEA/IMPMC
 - Iron: G. Morard et al. HEDP 2011, J. Bouchet et al. PRB 2013.
 - SiO₂: S. Mazevet et al. Phys. Rev. B 2015
 - MgO/MgSiO₃ R. Musella et al. in writing
 - Validated using high energy laser exp.: LULI, LCLS, LIL,...

Method validated experimentally on a limited (P,T) domain but with predictive capabilities

toire

Light elements: In collaboration with G. Chabrier CRAL Lyon

- Hydrogen: L. Caillabet et al. PRE 2011, PRL 2012.
- Helium and hydrogen-helium mixture F. Soubiran et al. PRB 2013.
- Water: A. Licari et al. in writing
- see also work by Militzer et al. and Redmer et al.
- Iron alloys and silicates ANR PlanetLab: OBS/LULI/CEA/IMPMC
 - Iron: G. Morard et al. HEDP 2011, J. Bouchet et al. PRB 2013.
 - SiO₂: S. Mazevet et al. Phys. Rev. B 2015
 - MgO/MgSiO₃ R. Musella *et al.* in writing
 - Validated using high energy laser exp.: LULI, LCLS, LIL,...

Method validated experimentally on a limited (P,T) domain but with predictive capabilities

 $\begin{array}{l} \text{H-He} \\ \text{H}_2 \text{O} \\ \text{MgSiO}_3/\text{MgO/SiO}_2 \end{array}$

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

 $\begin{array}{l} \text{H-He} \\ \text{H}_2 \text{O} \\ \text{MgSiO}_3/\text{MgO/SiO}_2 \end{array}$

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

Hydrogen/Helium update: pure elements

- 15years old experimental controversy resolved
- Less compressible than SCVH-EOS→size of the core
- No PPT→no abundance discontinuity

- Helium neutral while H metallic
- No grid for varying H-He concentrations
- Direct simulations of demixing

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT→two layers but He depletion → three
- Degenerate with metallic elts in the core or envelope 5-15M_E

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

• Two recent calculations

- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT→two layers but He depletion → three
- Degenerate with metallic elts in the core or envelope 5-15M_E

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT→two layers but He depletion → three
- Degenerate with metallic elts in the core or envelope 5-15M_E

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT→two layers but He depletion → three
- Degenerate with metallic elts in the core or envelope 5-15M_E

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT \rightarrow two layers but He depletion \rightarrow three
- Degenerate with metallic elts in the core or envelope 5-15M_E

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT \rightarrow two layers but He depletion \rightarrow three
- Degenerate with metallic elts in the core or envelope $5-15M_E$

H-He mixtures: Thesis F. Soubiran (CRAL Lyon)

Saturn luminosity and Jupiter's He abundance

- Two recent calculations
- Demixing in Saturn but enough to explain luminosity? (Salpeter 1973)
- Probably no demixing in Jupiter
- No PPT \rightarrow two layers but He depletion \rightarrow three
- Degenerate with metallic elts in the core or envelope $5-15M_E$

 $\substack{\text{H-He}\\\text{H}_2\text{O}\\\text{MgSiO}_3/\text{MgO/SiO}_2}$

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "Ices": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

 $\substack{\text{H-He}\\\text{H}_2\text{O}\\\text{MgSiO}_3/\text{MgO/SiO}_2}$

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

• "Ices": H_2O , NH_3 , CH_4

- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

H-He H2O MgSiO₃/MgO/SiO₂

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "Ices": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- \bullet Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

H-He H2O MgSiO₃/MgO/SiO₂

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "Ices": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

H-He H2O MgSiO₃/MgO/SiO₂

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "lces": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

H-He H2O MgSiO₃/MgO/SiO₂

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "lces": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

H-He H2O MgSiO₃/MgO/SiO₂

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "lces": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

Water EOS: thesis A. Licari (CRAL Lyon)

Neptune-Uranus type and giant planets cores

- "Ices": H_2O , NH_3 , CH_4
- Initial studies by Redmer *et al.* up to 10Mbar
- Superionic phase in H_2O
- Unusual magnetic fields in Uranus and Neptune
- Liquid in Saturn Jupiter and beyond
- Extended using Thomas Fermi limit: EOS up to 10000Mbar

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

${\sf MgSiO}_3$ dissociates into ${\sf MgO}$ and ${\sf SiO}_2$ above 10Mbar

- Studies on SiO₂ and MgO
- SiO₂ liquid in giants
- MgO solid at all conditions
- Core of giants SiO₂(I)/MgO(s)
- Could be the case for ice giants
- Super-Earths: No non-metal metal transition up to 40Mbar

 $^{\rm H-He}_{\rm H_2O} \\ \rm MgSiO_3/MgO/SiO_2$

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

- ${\scriptstyle \bullet}\,$ Studies on SiO $_2$ and MgO
- SiO $_2$ liquid in giants
- MgO solid at all conditions
- Core of giants SiO₂(I)/MgO(s)
- Could be the case for ice giants
- Super-Earths: No non-metal metal transition up to 40Mbar

 $^{\rm H-He}_{\rm H_2O} \\ \rm MgSiO_3/MgO/SiO_2$

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

- ${\scriptstyle \bullet}\,$ Studies on SiO $_2$ and MgO
- SiO $_2$ liquid in giants
- MgO solid at all conditions
- Core of giants SiO₂(I)/MgO(s)
- Could be the case for ice giants
- Super-Earths: No non-metal metal transition up to 40Mbar

 $^{\rm H-He}_{\rm H_{2}O}$ MgSiO_3/MgO/SiO_2

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

- ${\scriptstyle \bullet}\,$ Studies on SiO $_2$ and MgO
- SiO $_2$ liquid in giants
- MgO solid at all conditions
- Core of giants SiO₂(I)/MgO(s)
- Could be the case for ice giants
- Super-Earths: No non-metal metal transition up to 40Mbar

 $^{\rm H-He}_{
m H_2O}$ MgSiO_3/MgO/SiO_2

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

 $^{\rm H-He}_{
m H_2O}$ MgSiO_3/MgO/SiO_2

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

$MgSiO_3$ dissociates into MgO and SiO_2 above 10Mbar

- SiO $_2$ liquid in giants
- MgO solid at all conditions
- Core of giants SiO₂(I)/MgO(s)
- Could be the case for ice giants
- Super-Earths: No non-metal metal transition up to 40Mbar

iquid SiO₂ favors mixing: implications for tidal and evolution models servatoire

 $^{\rm H-He}_{
m H_2O}$ MgSiO_3/MgO/SiO_2

MgO-SiO₂: super-earth and giant cores (thesis R. Musella)

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive 2-3×10⁶CPU/h/element
- Experimental validation using high energy lasers
- EOS for H, He, H₂O, MgSiO₃, MgO, SiO₂, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H₂O, MgSiO₃, MgO, SiO₂, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H₂O, MgSiO₃, MgO, SiO₂, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H $_2$ O, MgSiO $_3$, MgO, SiO $_2$, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H $_2$ O, MgSiO $_3$, MgO, SiO $_2$, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

 $^{\rm H-He}_{\rm H_{2}O}$ MgSiO_3/MgO/SiO_2

Complete planetary models based on ab initio results

Summary

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H $_2$ O, MgSiO $_3$, MgO, SiO $_2$, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

 $^{\rm H-He}_{\rm H_{2}O}$ MgSiO_3/MgO/SiO_2

Summary

Complete planetary models based on ab initio results

- Computationnaly intensive $2-3 \times 10^6 \text{CPU/h/element}$
- Experimental validation using high energy lasers
- EOS for H, He, H $_2$ O, MgSiO $_3$, MgO, SiO $_2$, Fe
- 1D-models using ab initio EOS in progress
- Goal: provide benchmark EOS and 1D-models

Collaborators

Theory side

- S. Mazevet and phD students: F. Festa, F. Soubiran, R. Musella, L. Caillabet, A. Licari
 LUTH. Observatoire de Paris, 92195 Meudon
- V. Recoules, J. Bouchet CEA, DAM, DIF, F91297 Arpajon
- G. Chabrier, C. Winisdoerffer, F. Soubiran, A. Licari CRAL, Ecole Nationale Supérieure, 69180 Lyon

Experimental side

- A. Benuzzi-Mounaix, A. Denoeud, M. Koenig, A. Ravasio LULI, Ecole Polytechnique, 91128 Palaiseau
- F. Dorchies
 - CELIA, Université Bordeaux 1, 33405 Bordeaux
- F. Guyot, G. Morard IMPMC, Université Paris VI Jussieu, 75006 Paris

ANR Planetlab: 4 years funding started in 2012