Heating torque on low mass planets

P. Benítez-Llambay¹, F. Masset^{2*}, G. Koenigsberger², J. Szulágyi³

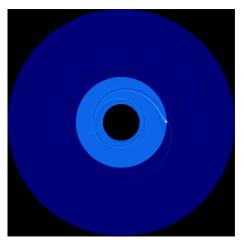
1. Córdoba Univ, Argentina, 2. UNAM, Mexico, 3. OCA, France

イロン 不得 とくほ とくほとう

æ

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk


The planet excites a one-armed spiral wake

Benítez-Llambay, Masset*, Koenigsberger, Szulágyi

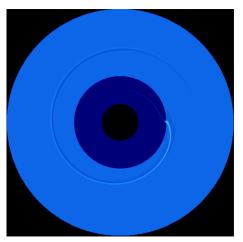
Heating torque

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk

In the inner disk, the wake is leading the planet \implies **positive** torque arises from inner disk

(日)


< ∃→

Benítez-Llambay, Masset*, Koenigsberger, Szulágyi

Heating torque

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk

In the outer disk, the wake is behind the planet \implies negative torque arises from outer disk

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Benítez-Llambay, Masset*, Koenigsberger, Szulágyi

Heating torque

Net wake torque: differential Lindblad torque

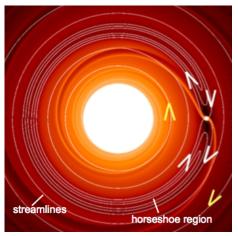
- For small mass planets, wake = linear superposition of waves launched at the Outer and Inner Lindblad resonances
- Outer and inner torque have large absolute values. The net torque, their sum, is a not so small fraction of them
- Generally negative, this torque can lead to a fast decay of a planet toward its star. The more massive the planet, the faster this decay

イロト イポト イヨト イヨト

Net wake torque: differential Lindblad torque

- For small mass planets, wake = linear superposition of waves launched at the Outer and Inner Lindblad resonances
- Outer and inner torque have large absolute values. The net torque, their sum, is a not so small fraction of them
- Generally negative, this torque can lead to a fast decay of a planet toward its star. The more massive the planet, the faster this decay

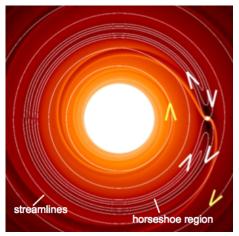
ヘロト 人間 ト ヘヨト ヘヨト


Net wake torque: differential Lindblad torque

- For small mass planets, wake = linear superposition of waves launched at the Outer and Inner Lindblad resonances
- Outer and inner torque have large absolute values. The net torque, their sum, is a not so small fraction of them
- Generally negative, this torque can lead to a fast decay of a planet toward its star. The more massive the planet, the faster this decay

イロト イポト イヨト イヨト

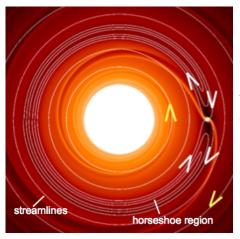
A few 10^5 years for 1 M_{\oplus} in the MMSN at 1 AU.


Corotation torque

Horseshoe region: streamlines that *librate* near the orbit and exchange angular momentum with the planet as they perform U-turns

イロト イポト イヨト イヨト

Corotation torque

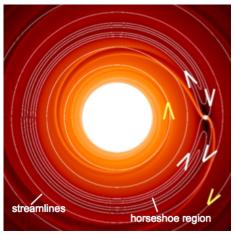

This corresponds to the corotation torque

イロン 不同 とくほ とくほ とう

ъ

Benítez-Llambay, Masset*, Koenigsberger, Szulágyi Heating torque

Corotation torque



Total torque is the sum of corotation and differential Lindblad torques

イロン 不同 とくほ とくほ とう

э

Corotation torque

The corotation torque depends on gradients across the orbit, in particular the gradient of entropy

イロト イポト イヨト イヨト

э

Impact of heat released by planet?

• Torque sensitive to entropy distribution near the planet

Planetary mass growth releases entropy in the surrounding nebula

ヘロト 人間 ト ヘヨト ヘヨト

• \implies incorporate heat release to planet in disk model

Impact of heat released by planet?

- Torque sensitive to entropy distribution near the planet
- Planetary mass growth releases entropy in the surrounding nebula

ヘロト 人間 ト ヘヨト ヘヨト

 $\bullet \implies$ incorporate heat release to planet in disk model

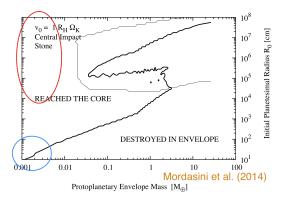
Impact of heat released by planet?

- Torque sensitive to entropy distribution near the planet
- Planetary mass growth releases entropy in the surrounding nebula

くロト (過) (目) (日)

• \implies incorporate heat release to planet in disk model

Heat release by planet


Small mass planet ($\lesssim 5 M_{\oplus}$) bombarded by solid material which releases heat at the rate:

$$\dot{E} = rac{GM_p\dot{M}_p}{R_p}$$

Assumes all infalling bodies reach the planet's surface.

- Largely satisfied for planetesimal accretion
- Barely so for pebble accretion

Heat release by planet

Largely satisfied for planetesimal accretion

イロト イポト イヨト イヨト

э

Barely so for pebble accretion

Numerical procedure

• Solve hydrodynamics equation on spherical mesh

- Solve radiative transfer equations (grey approximation + FLD)
- Start with a disk in thermal and hydrostatic equilibrium (heating source: viscous heating).

ヘロト ヘアト ヘヨト ヘ

Numerical procedure

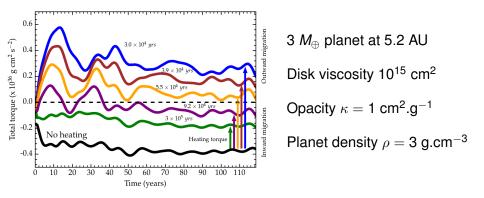
- Solve hydrodynamics equation on spherical mesh
- Solve radiative transfer equations (grey approximation + FLD)
- Start with a disk in thermal and hydrostatic equilibrium (heating source: viscous heating).

イロト イヨト イヨト イ

Numerical procedure

- Solve hydrodynamics equation on spherical mesh
- Solve radiative transfer equations (grey approximation + FLD)
- Start with a disk in thermal and hydrostatic equilibrium (heating source: viscous heating).

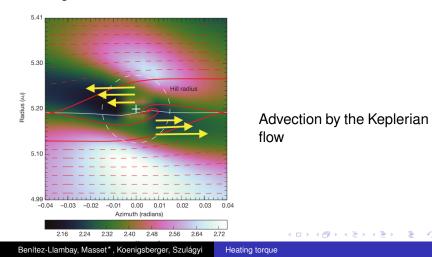
< □ > < 同 > < 三 > <


- ⊒ →

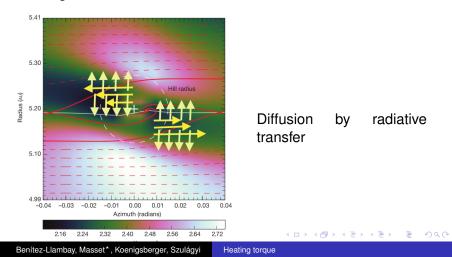
Numerical procedure

- Solve hydrodynamics equation on spherical mesh
- Solve radiative transfer equations (grey approximation + FLD)
- Start with a disk in thermal and hydrostatic equilibrium (heating source: viscous heating).

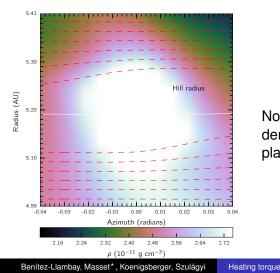
イロト イポト イヨト イヨト


Results of fiducial calculation

Torque reversal for mass doubling time $\lesssim 10^5$ yrs

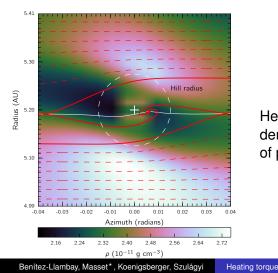

Why is the heating torque positive - 1?

The heat released is subject to an advection-diffusion problem. Heated gas is under-dense.


Why is the heating torque positive - 1?

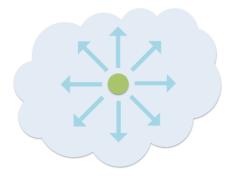
The heat released is subject to an advection-diffusion problem. Heated gas is under-dense.

Why is the heating torque positive - 2?


Density in the disk midplane

No heat release: large density values in the planet vicinity

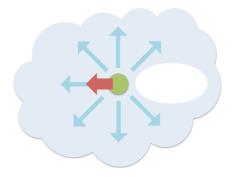
Why is the heating torque positive - 2?


Density in the disk midplane

Heat release: two underdense lobes on each side of planet

Why is the heating torque positive - 2?

Density in the disk midplane

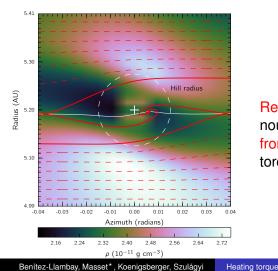


Idealized situation Uniform density \Rightarrow no net force

(日)

Why is the heating torque positive - 2?

Density in the disk midplane



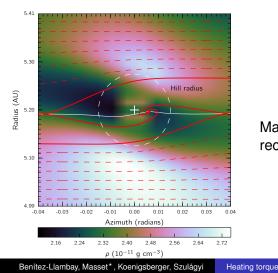
Net force opposite empty or underdense region

ъ

Why is the heating torque positive - 2?

Density in the disk midplane

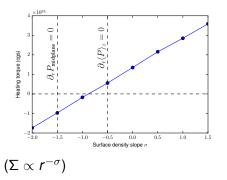
Rear lobe more pronounced: net force frontward \Rightarrow positive net torque


< < >> < </>

3

- < ≣ → <

Sub-Keplerian disk \Rightarrow asymmetric lobes


Planet is outside of corotation (white line)

Material from outer disk receives more heat

Sub-Keplerian disk \Rightarrow asymmetric lobes

Planet is outside of corotation (white line)

Heating torque negative only when disk super-Keplerian

イロト イポト イヨト イヨト

э

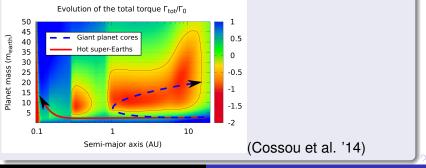
Strong dependence on metallicity

Twofold dependence on metallicity

- through the bombardment rate: scales with amount of solids
- through the opacity: scales with amount of dust

Strong dependence on metallicity

Twofold dependence on metallicity


- through the bombardment rate: scales with amount of solids
- through the opacity: scales with amount of dust

Strong dependence on metallicity

Twofold dependence on metallicity

- through the bombardment rate: scales with amount of solids
- through the opacity: scales with amount of dust

Bifurcation depending on system's metallicity

Benítez-Llambay, Masset*, Koenigsberger, Szulágyi Heating torque

Early Solar System

- Our fiducial calculation has a conservative opacity $\kappa = 1 \text{ cm}^2.\text{g}^{-1}$
- and heating torque largely insensitive to surface density and viscosity

In the early Solar System the most massive embryos should have undergone outward migration (if $\tau \leq O(10^5)$ yrs)

イロト イポト イヨト イヨト

Conclusions and perspectives

Conclusions

- Heating torque positive in sub-Keplerian disks
- Increases with accretion rate
- Strongly depends on disk's solid content
- Yields a bifurcation of embryos' migration behavior wrt metallicity

Perspectives

- Conservative estimates (converged): discards inner Hill sphere
- Flow can be complex on a smaller scale (Ormel+ 15, Fung+ 15) ⇒ needs AMR
- Relax fixed circular orbit. Potentially impact on e (and i ?)