Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars

Geoff Marcy, Erik Petigura, Andrew Howard

Collaborators: Lauren Weiss, Howard Isaacson, Rea Kolbl, Lea Hirsch Thanks to: UC Berkeley, Univ. Hawaii, Keck Observatory, NASA

Kepler Planets

Kepler Planets

Kepler Planets

40,000 bright GK stars

40,000 bright GK stars

Search for significant transits using TERRA photometric pipeline Q1–Q15

2184 TCEs

TERRA

In-house photometric Transit Search: Optimized for small planet detection

Enables measurement of detection efficiency (completeness) using injection and recovery experiments

TERRA – optimized for small planets

Time domain preprocessing

- Start with raw photometry
- Gaussian process detrending
- Calibration
- Petigura & Marcy 2012

Transit search

- Matched filter
- Similar to BLS algorithm (Kovacs, Zucker, Mazeh 2002)
- Leverages Fast-Folding Algorithm (Staelin+ 68; Petigura+ 13, in prep)

Transit Periodogram

40,000 bright GK stars

Search for significant transits using TERRA photometric pipeline Q1–Q15

2184 TCEs

Search for significant transits using TERRA photometric pipeline

Remove non-astrophysical

Identifying eclipsing binaries using secondary eclipses

603 Planet Candidates

574 (95%) KOIs (Nov 2013)

597 (99%) KOIs (Jun 2014)

Keck HIRES spectra of 318 eKOIs

Keck spectra of all 62 candidates with P > 100 days

Keck HIRES Spectra

Better stellar parameters

- R_★ good to 10%
(photometry: 40%)

- L★ good to 25%
(photometry: 80%)

Find false positives

- Detect second set of lines
- Kolbl and Marcy (2014)

False positive vetting

Representative Earth-size Candidates

Period > 40 days

9/10 are KOIs.

Keck spectra of all.

Injection and Recovery Determination: Pipeline Completeness

Completeness from Injection and Recovery

Planet Occurrence: Planet Size and Orbital Period

Planet Size Distribution

Planet Size Distribution

Planet Size

Mullally, Batlaha, Burke, et al: 29% for 1-2 REarth, P < 50 d 60% for 1-2 REarth, P < 300 d

Charbonneau et al:

Planet Size

Mullally, Batlaha, Burke, et al: 29% for 1-2 REarth, P < 50 d 60% for 1-2 REarth, P < 300 d

Charbonneau et al:

Our work: Only one planet included per host star. ==> 26% is a Lower limit to occurrence

Planet Size Distribution

Planet Occurrence: Planet Radius and Incident Flux

Sub-Neptunes: Summary

Probably Formed in close - Near where are they are now.

