From Super-Earths to Brown Dwarfs: Who's Who? A perspective from the Solar System

Jérémy Leconte

From Super-Earths to Brown Dwarfs: Who's Who? A perspective from the Solar System

Jérémy Leconte

Who's who: Does living in the Solar System mislead us?

Jérémy Leconte

Mass-Radius diagram: Is there any clear boundary?

- Earth-mass
- Super-Earths
- Mini-Neptunes
- Ice giants
- Gas Giants
- Super-Jupiters
- Brown Dwarfs

Mass-Radius diagram: Is there any clear boundary?

- Earth-mass
- Super-Earths
- Mini-Neptunes
- Ice giants
- Gas Giants
- Super-Jupiters
- Brown Dwarfs

So, where do these $M(M_J)$ definitions come from? $10^{-8} \ 10^{-6} \ 10^{-4} \ 10^{-2} \ 10^{0} \ 10^{2}$ **O** 10 100 ħЧ 1 10 鄻 $R(R_{\oplus})$ $R(R_J)$ 0.1 1 Ø O ¥ 0.01 0.1 0.001 0.01 $10^{-6} \ 10^{-4} \ 10^{-2} \ 10^{0} \ 10^{2}$ 10^{4} $M(M_{\oplus})$

terrestrial planet

giant planet

A **gas giant** is a giant planet composed mainly of hydrogen and helium

> An **ice giant** is a giant planet composed mainly of substances heavier than hydrogen and helium, such as O, C, N, S.

terrestrial planet

A giant planet is any massive planet

A gas giant is a giant planet composed mainly of hydrogen and helium

> An **ice giant** is a giant planet composed mainly of substances heavier than hydrogen and helium, such as O, C, N, S.

A **terrestrial planet**, **telluric planet** or **rocky planet** is a planet that is composed primarily of silicate rocks or metals

A giant planet is any massive planet

A gas giant is a giant planet composed mainly of hydrogen and helium

> An **ice giant** is a giant planet composed mainly of substances heavier than hydrogen and helium, such as O, C, N, S.

Is there a more rigorous physical basis

Is there a more rigorous physical basis

Is there a more rigorous physical basis

(Sub)stellar evolution equations

 ∂r $\frac{\partial m}{\partial m} = -\frac{1}{4\pi r^2 \rho}$ $-\frac{Gm(r)}{4\pi r^4}$ ∂P $\overline{\partial m}$: $T \frac{\partial S}{\partial t}$ $\frac{\partial l}{\partial m}$ $= \epsilon -$

(Sub)stellar evolution equations

(Sub)stellar evolution equations

Only one big family?

Do we need precise definitions?

No

How many exoplanets fall into IAU's definition?

How many exoplanets fall into IAU's definition?

How many exoplanets fall into IAU's definition?

But naming things is important...

insuce rouge stewall, 270 U.S. 104, 124

Rationality is for economists as pornography was to the US Supreme Court, undefinable but nonetheless easily identified; and yet, like the Justices of the Court, no two economists share a common definition. This article details some of the common meanings of individual (as

The Palgrave Dictionary of Economics

Unsuce ruller olewall, 270 U.S. 104, 127

Rationality is for economists as pornography was to the US Supreme Court, undefinable but nonetheless easily identified; and yet, like the Justices of the Court, no two economists share a common definition. This article details some of the common meanings of individual (as

It's not the definition, it's the concept that matters

the geologists never bothered to define a «continent»
We always have the numbers to be specific!

The Palgrave Dictionary of Economics

The eight «concepts» of the Solar System

- Planets are more than a data point in a mass-radius diagram
 - We can resolve Solar System planets
 - Many different, exquisite observational constraints

- Planets are more than a data point in a mass-radius diagram
 - We can resolve Solar System planets
 - Many different, exquisite observational constraints

- Planets are more than a data point in a mass-radius diagram
 - We can resolve Solar System planets
 - Many different, exquisite observational constraints

• Planets are not spherically symmetric

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Moons are common

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Moons are common
- Planetary interiors are not fully mixed (or fully stratified)

Assumption of large homogeneous/well mixed layers often done because of the lack of constraints!

from a review by T. Guillot (2005)

Stevenson (1979); Chabrier & Baraffe (2007); Leconte et al. (2013, 2014)

Gravitational sounding

$$\nabla P = -\rho \nabla (V_G + V_{rot})$$

$$V_{ext}(r, \theta) = -\frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{a}{r} \right)^{2n} J_{2n} P_{2n}(\cos \theta) \right]$$
Clairaut, Radau, ...
Zharkov & Trubitsyn
(1973, 1979, 1980)
$$J_{2n} = -\frac{1}{M_1 R_{eq}^{2n}} \iint \rho(r, \theta) r^{2n} P_{2n}(\cos \theta) d^3r$$

Gravitational sounding

An independent confirmation from ring seismology

Fuller (Icarus, 2014) but there is hope for exoplanets...

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse...

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike

Fortney et al. (ApJ, 2011)

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike
- Atmospheric (and interior) compositions are not scaled up solar metallicites (important to understand formation and evolution)

What we wou

- Planets are
- Planets (and (at all scales)
- Planetary in
- Planets can
- Atmospheri metallicites

Ratio to Solar

ARIEL

The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey

ystem

objects

stratified) k alike caled up solar

Towards an H-R Diagram for Planets

A Candidate for the ESA M4 Mission

from a review by T. Guillot (2005)

Largest known trans-Neptunian objects (TNOs)

Largest known trans-Neptunian objects (TNOs)

