From Super-Earths to Brown Dwarfs: Who’s Who? A perspective from the Solar System

Jérémy Leconte

The Solar System
Mass-Radius diagram


The Solar System
Mass-Radius diagram

$$
\begin{gathered}
M\left(M_{J}\right) \\
10^{-8} 10^{-6} 10^{-4} 10^{-2} \quad 10^{0} \quad 10^{2}
\end{gathered}
$$

The

Brown dwarf | 10 | 100 | ${ }_{\circ}^{1000}$ |
| :--- | :--- | :--- |
|  |  |  |
| 10 |  |  | regime




The Solar System
Mass-Radius diagram

$$
M\left(M_{J}\right)
$$

$\qquad$
The
Super-Earth ${ }^{0.01} \quad 0.03$ w

## regime



From Super-Earths to Brown Dwarfs: Who’s Who? A perspective from the Solar System

Jérémy Leconte

## Who's who: <br> Does living in the Solar System mislead us?

Jérémy Leconte


## Mass-Radius diagram: Is there any clear boundary?

- Earth-mass
- Super-Earths
- Mini-Neptunes
- Ice giants
- Gas Giants
- Super-Jupiters
- Brown Dwarfs


## Mass-Radius diagram: Is there any clear boundary?



## Mass-Radius diagram:

 Is there any clear boundary? $\quad \begin{array}{llllll}10^{-4} & 10^{-2} & 10^{0} & 10^{2}\end{array}$- Earth-mass
- Super-Earths
- Mini-Neptunes
- Ice giants
- Gas Giants
- Super-Jupiters
- Brown Dwarfs


So, where do these definitions come from?


## terrestrial planet

## giant planet

gas giant
ice giant

## terrestrial planet

## giant planet

gas giant

An ice giant is a giant planet composed mainly of substances heavier than hydrogen and helium, such as $O, C, N, S$.

## terrestrial planet

## giant planet

A gas giant is a giant planet composed mainly of hydrogen and helium

An ice giant is a giant planet composed mainly of substances heavier than hydrogen and helium, such as $O, C, N, S$.

## terrestrial planet

## A giant planet is any massive planet

A gas giant is a giant planet composed mainly of hydrogen and helium

An ice giant is a giant planet composed mainly of substances heavier than hydrogen and helium, such as $O, C, N, S$.

A terrestrial planet, telluric planet or rocky planet is a planet that is composed primarily of silicate rocks or metals

## A giant planet is any massive planet

A gas giant is a giant planet composed mainly of hydrogen and helium

An ice giant is a giant planet composed mainly of substances heavier than hydrogen and helium, such as O, C, N, S.

## Is there a more rigorous physical basis

## Is there a more rigorous physical basis

## Is there a more rigorous physical basis

## (Sub)stellar evolution equations



## (Sub)stellar evolution equations



$$
\begin{aligned}
& \frac{\partial P_{P} P_{i}}{\partial m}=-\frac{G m(r)}{4 \pi r^{4}} \\
& \frac{\partial \bar{l},}{\partial m}=\frac{\partial T}{T}
\end{aligned}
$$

## (Sub)stellar evolution equations


=> Boundary conditions

## Mass-Radius diagram


$\underset{8}{28}$

Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram: the good news



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram: the good news



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram: the good news



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram: the good news



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Mass-Radius diagram: the good news



Zapolsky, Salpeter, Stevenson, Hubbard, Chabrier, Baraffe, Guillot, Fortney, ...

## Only one big family?



Do we need precise definitions?

No

## PIOP YUTO







## But naming things is important...

Rationality is for economists as pornography was to the US Supreme Court, undefinable but nonetheless easily identified; and yet, like the Justices of the Court, no two economists share a common definition. This article details some of the common meanings of individual (as


Rationality is for economists as pornography was to the US Supreme Court, undefinable but nonetheless easily identified; and yet, like the Justices of the Court, no two economists share a common definition. This article details some of the common meanings of individual (as

## It's not the definition,

 it's the concept that matters-the geologists never bothered to define a «continent»
-We always have the numbers to be specific!

The Palgrave Dictionary of Economics

## The eight «concepts» of the Solar System




## What we would forget without the Solar System

- Planets are more than a data point in a mass-radius diagram
- We can resolve Solar System planets
- Many different, exquisite observational constraints


## What we would forget without the Solar System

- Planets are more than a data point in a mass-radius diagram
- We can resolve Solar System planets
- Many different, exquisite observational constraints



## What we would forget without the Solar System

- Planets are more than a data point in a mass-radius diagram
- We can resolve Solar System planets
- Many different, exquisite observational constraints

- We can even go there...


## What we would forget without the Solar System

## What we would forget without the Solar System

- Planets are not spherically symmetric



## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)



## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Moons are common



## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Moons are common
- Planetary interiors are not fully mixed (or fully stratified)



## What we would forget without the Solar System



## Assumption of large homogeneous/well mixed layers often done because of the lack of constraints!

from a review by T. Guillot (2005)


Stevenson (1979); Chabrier \& Baraffe (2007);
Leconte et al. $(2013,2014)$

## Gravitational sounding

$$
\nabla P=-\rho \nabla\left(V_{G}+V_{\text {rot }}\right)
$$

Clairaut, Radau, ... Zharkov \& Trubitsyn (1973,1979,1980)

$$
\begin{gathered}
V_{\text {ext }}(r, \theta)=-\frac{G M}{r}\left[1-\sum_{\mathrm{n}=1}^{\infty}\left(\frac{a}{r}\right)^{2 \mathrm{n}} J_{2 \mathrm{n}} P_{2 \mathrm{n}}(\cos \theta)\right] \\
J_{2 \mathrm{n}}=-\frac{1}{M_{1} R_{\mathrm{eq}}^{2 \mathrm{n}}} \iiint \rho(r, \theta) r^{2 \mathrm{n}} P_{2 \mathrm{n}}(\cos \theta) \mathrm{d}^{3} \mathbf{r}
\end{gathered}
$$

## Gravitational sounding



## An independent confirmation from ring seismology



Fuller (Icarus, 2014)
but there is hope for exoplanets...

## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)


## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse...


## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike



Fortney et al. (ApJ, 2011)

## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike


## What we would forget without the Solar System

- Planets are not spherically symmetric
- Planets (and their atm) are actually 3D dynamical objects (at all scales)
- Planetary interiors are not homogeneous (or fully stratified)
- Planets can be very diverse... even when they look alike
- Atmospheric (and interior) compositions are not scaled up solar metallicites (important to understand formation and evolution)



## What we wol

- Planets are
- Planets (anc (at all scales
- Planetary in
- Planets can
- Atmospheri metallicites



## Largest known trans-Neptunian objects (TNOs)



Eris



Haumea


Sedna


Quaoar

## Largest known trans-Neptunian objects (TNOs)



Eris


Sedna
2007 OR $_{10}$

