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A	  non-‐exhaustive	  history	  of	  theoretical	  works	  dealing	  with	  atmospheric	  tides:	  	  
	  

à Atmospheric	  tides	  of	  the	  Earth	  
Ø  Chapman	  &	  Lindzen	  (1970)	  

à Spin	  equilibrium	  
Ø  Gold	  &	  Soter	  (1969),	  Correia,	  Laskar,	  Néron	  de	  Surgy	  (2001),	  Correia	  &	  

Laskar	  (2003),	  Correia,	  Levrard,	  Laskar	  (2008)	  
à Atmosphere	  of	  super-‐Earths	  

Ø  Forget	  &	  Leconte	  (2014)	  

Towards a new model of atmospheric tides 

Atmospheric	  tidal	  dissipation	  little	  understood	  and	  poorly	  quantified!	  
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As for gravitational tides, the redistribution of mass
in the atmosphere gives rise to an atmospheric bulge that
modifies the gravitational potential generated by the atmo-
sphere in any point of the space. The tidal potential U

a

responsible for the spin changes is given by3 (e.g. Correia
& Laskar 2003a):
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where p̃2 is the second order surface pressure variations,
and ⇢̄ is the mean density of the planet.

To find the contributions to the spin we use expressions
(4) together with the averaging method over fast varying
angles, which gives:
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where �t
a

is the atmosphere’s delayed response to the stel-
lar heat excitation, and �

a

the corresponding phase lag.
The amplitude of the bulge, p̃2, is the second order surface
pressure variations (Chapman & Lindzen 1970):
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where � = 7/5 for a perfect diatomic gas, p̃0 is the mean
surface pressure, �

�

is the tidal winds velocity, J
�

is the
amount of heat absorbed or emitted by unit of mass of
air per unit time, and H0 is the scale height at the surface.
The imaginary number in equation (18) causes the pressure
variations to lead the star (i = ei⇡/2).

The coefficients ⇤

a

�

and ⌥

a

�

are also polynomials in the
eccentricity, but different from their analogs for gravita-
tional tides (Eqs. 10 and 11). Once more, for a planet
with moderate eccentricity, we can neglect terms in e4 and
greater, and obtain the following development for equations

3 We did not include the diurnal surface pressure variations,
because they correspond to a displacement of the center of mass
of the atmosphere bulge, which has no dynamical implications.
We also neglect terms in (R/r)4.
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and
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similar to Venus than to Earth. Thus we may apply the
Correia et al. (2003) and Correia & Laskar (2003b) model
for Venus spin evolution to the Earth-like exoplanets.

In this work we expect to be able to infer about the
present rotation of Earth-like planets in the HZ. Contrarily
to Venus, whose orbit is almost circular, most of these ex-
oplanets have non-zero eccentricities. Therefore, the above
mentioned model for Venus’ rotation needs to be general-
ized in order to cope with such conditions. We also assess
if these planets can only evolve to final obliquity of 0� and
180

� (Correia et al. 2003), or if they can present intermedi-
ate stable obliquities. In section 2 we present the equations
of motion that describe the long-term spin evolution of a
terrestrial planet. We also describe the contribution of the
main dissipative effects: the gravitational tides, thermal at-
mospheric tides, and core-mantle friction. In section 3 we
present a dynamical analysis for the spin evolution and con-
sequent final equilibrium rotation states. In section 4 we
present numerical simulations for the spin evolution start-
ing with different initial rotation periods and obliquities.
We apply our model both to the known Earth-like planets,
but also to fictitious Earth-like planets in the HZ of Sun-like
stars. We finish this work by presenting our conclusions in
section 5.

2. Equations of motion

2.1. Conservative motion

The planet is considered here as a rigid body with mo-
ments of inertia A = B < C. As we are interested in the
long-term behavior of the spin axis, we merge the axis of
figure with the direction of the angular momentum (gyro-
scopic approximation). The averaged Hamiltonian of the
motion H can be written using canonical Andoyer’s action
variables (L,X) and their conjugate angles (✓,') (Andoyer
1923; Kinoshita 1977). L = C! is the projection of the an-
gular momentum with rotation rate ! on the C axis, and
X its projection on the normal to the ecliptic; ✓ is the hour
angle between the equinox and a fixed point of the equator,
and ' is the precession angle. For a slow precessing planet
('̇ ⌧ !), we have X ' L cos ", where " is the obliquity.
Averaging the Hamiltonian over the rotation angle and the
mean anomaly, we get (Kinoshita 1977; Correia & Laskar
2010)
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is the “precession constant”. G, M⇤, a, n, and e are the grav-
itational constant, the stellar mass, the planet semi-major
axis, the mean motion, and the eccentricity, respectively.
E

d

is the dynamical ellipticity1,
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where R is the planet radius, and k
f

is the fluid Love num-
ber. The first part of this expression corresponds to the
1 When A 6= B, after averaging over the fast rotation angles we
can replace A by (A+B)/2 (e.g. Boué & Laskar 2006).

flattening in hydrostatic equilibrium (Lambeck 1980), and
the second corresponds to the departure from this equilib-
rium.

Since Andoyer’s variables are canonical, the spin equa-
tions of motion are easily obtained from the mean Hamil-
tonian (Eq.1) as
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which gives
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that is, the rotation rate and the obliquity are constant,
and the planet precesses with at a constant rate.

2.2. Tidal effects

Tidal effects arise from planetary differential and inelastic
deformations caused by a perturbing body. There are two
types of tidal effects: the gravitational tides and the ther-
mal atmospheric tides. The estimations for both effects
are based on a general formulation of the tidal potential,
initiated by Darwin (1880). We first write the complete
tidal potential expression, U , expressed in the canonical
Andoyer’s variables. The contributions to the spin are thus
easily obtained through expressions (4). Since we are only
interested in the long-term evolution of the spin, we then
average the resulting equations over the rotation angle, the
mean anomaly, the argument of the periapsis, and the lon-
gitude of the node. To do this work we used the algebraic
manipulator TRIP (Laskar 1989, 1994), which expands the
tidal potential in Fourier series, as in Kaula (1964) and
Correia & Laskar (2010).

2.2.1. Gravitational tides

Gravitational tides are raised on the planet by a perturb-
ing body because of the gravitational gradient across the
planet. The force experienced by the side facing the per-
turbing body is stronger than that experienced by the far
side. These tides are mainly important upon the solid (or
liquid) part of the planet, and are independent of the exis-
tence of an atmosphere.

Since the planets are not perfectly rigid, there will be a
distortion that gives rise to a tidal bulge. This redistribu-
tion of mass modifies the gravitational potential generated
by the planet in any point of the space. The additional
amount of potential, the tidal potential U

g

, is responsible
for the modifications in the planet’s spin (and orbit). It is
given by2 (e.g. Lambeck 1980):

U
g

= �k2
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P2(cosS) , (6)

where r and r⇤ are the distance from the planet’s center of
mass to a generic point and to the star, respectively, S is
the angle between these two directions, P2 are the second
order Legendre polynomials, and k2 is the second potential
Love number.
2 We neglect terms in (R/r)4.
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As for gravitational tides, the redistribution of mass
in the atmosphere gives rise to an atmospheric bulge that
modifies the gravitational potential generated by the atmo-
sphere in any point of the space. The tidal potential U

a

responsible for the spin changes is given by3 (e.g. Correia
& Laskar 2003a):
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where p̃2 is the second order surface pressure variations,
and ⇢̄ is the mean density of the planet.

To find the contributions to the spin we use expressions
(4) together with the averaging method over fast varying
angles, which gives:
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where �t
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is the atmosphere’s delayed response to the stel-
lar heat excitation, and �
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the corresponding phase lag.
The amplitude of the bulge, p̃2, is the second order surface
pressure variations (Chapman & Lindzen 1970):
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where � = 7/5 for a perfect diatomic gas, p̃0 is the mean
surface pressure, �

�

is the tidal winds velocity, J
�

is the
amount of heat absorbed or emitted by unit of mass of
air per unit time, and H0 is the scale height at the surface.
The imaginary number in equation (18) causes the pressure
variations to lead the star (i = ei⇡/2).

The coefficients ⇤

a

�

and ⌥

a

�

are also polynomials in the
eccentricity, but different from their analogs for gravita-
tional tides (Eqs. 10 and 11). Once more, for a planet
with moderate eccentricity, we can neglect terms in e4 and
greater, and obtain the following development for equations

3 We did not include the diurnal surface pressure variations,
because they correspond to a displacement of the center of mass
of the atmosphere bulge, which has no dynamical implications.
We also neglect terms in (R/r)4.
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Table 1. Characteristics and equilibrium rotation rates of Earth-like planets with masses lower than 12 M⊕ (see text for notations).

Name M∗ Age ∗τeq m sin i a e ωs/n 2π/n 2π/ω−1 2π/ω−2 2π/ω+1 2π/ω+2
[M$] [Gyr] [Gyr] [m⊕] [AU] [day] [day] [day] [day] [day]

Venus 1.00 4.5 2.3 0.82 0.723 0.007 1.92 224.7 −243 76.8
GJ 581 c1 0.31 4.3 10−5 5.0 0.073 0.16 0.0002 12.93 11.2
GJ 876 d2 0.32 9.9 10−8 5.7 0.021 0 10−5 1.9378 1.9379 1.9377
GJ 581 d1 0.31 4.3 0.04 7.7 0.253 0.2 0.0026 83.6 67.4
HD 69830 b3 0.86 4–10 10−5 10.2 0.079 0.10 0.0009 8.667 8.17
GJ 674 b4 0.35 0.1-1 10−7 11.7 0.039 0.2 10−5 4.693 3.79
HD 69830 c3 0.86 4-10 10−3 11.8 0.186 0.13 0.0069 31.56 28.5

∗ Using Eq. (7) with k2 = 1/3 and ∆tg = 640 s (Earth’s values). References: [1] Udry et al. (2007); [2] Rivera et al. (2005); [3] Lovis et al. (2006);
[4] Bonfils et al. (2007). Earth-like planets OGLE-2005-BLG-390Lb (Beaulieu et al. 2006) and MOA-2007-BLG-192-Lb (Bennett et al. 2008)
have not been included because their despinning timescales τeq ∼ 102 Gyr are much larger than the age of the Universe.
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Fig. 1. Evolution of ω̇ (Eq. (5)) with ωs/n = 1.92, ωs/n = 0.40 and
ωs/n = 0.05, for different eccentricities (e = 0.0, 0.1, 0.2). The equilib-
rium rotation rates are given by ω̇ = 0 and the arrows indicate whether
it is a stable or unstable equilibrium position. For ωs/n > 1, we have
two equilibrium possibilities, ω±2 , one of which corresponds to a retro-
grade rotation (as for Venus). For ωs/n < 1, retrograde states are not
possible, but we can still observe final rotation rates ω− < n. For eccen-
tric orbits, because of the terms in bτ(2ω − n) and bτ(2ω − 3n), we may
have at most four different final possibilities (Eq. (12)). When ωs/n be-
comes extremely small, which is the case for the present observed extra-
solar planets with some eccentricity (Table 1), a single final equilibrium
is possible for ω+1 .

where

g(ω) =
Kg

4Ka

[
bg(2ω − n) + 49bg(2ω − 3n)

]

− ba(2ω − n) + 9 ba(2ω − 3n). (11)

Since bτ(σ) are monotonic odd functions, the effect of the eccen-
tricity is eventually to split each previous equilibrium rotation

rate into two new equilibrium values so that four final equilib-
rium positions for the rotation rate are possible, written as:

ω±1,2 = n ± ωs + e2 δ±1,2 , (12)

with

δ±1,2 =

(
2 +

g(ω)
|ba(2ω − 2n)|

)
∂ f −1

∂x

∣∣∣∣∣∣
x=1
, (13)

or, adopting the tidal models described in Sect. 2 (Eq. (5)):

δ−1,2 = 6n − (6 ± 1)ωs and δ+1,2 = 6n − (4 ± 9)ωs, (14)

where + corresponds to the state δ1 and− to the state δ2. Because
the set of ω±1,2 values must verify the additional condition

ω−2 < n/2 < ω−1 < n < ω+1 < 3n/2 < ω+2 , (15)

these four equilibrium rotation states cannot, in general, exist
simultaneously, depending on the values of ωs and e. In par-
ticular, the final states ω−1 and ω+1 can never coexist with ω−2 .
At most three different equilibrium states are therefore possible,
obtained when ωs/n is close to 1/2, or more precisely, when
1/2− 17 e2/2 < ωs/n < 1/2+ 7 e2/2. Conversely, we found that
one single final state ω+1 = (1+6e2) n+ (1−13e2)ωs exists when
ωs/n < 6e2(1 − 7e2).

4. Application to Earth-like extra-solar planets

The Earth and Venus are the only Earth-like planets for which the
atmosphere and spin are known. Only Venus is tidally evolved
and therefore suitable for applying the above expressions for
tidal equilibrium. We can nevertheless investigate the final equi-
librium rotation states of the already detected “super-Earths”.
For that purpose, we considered only the 6 extra-solar plan-
ets of masses smaller than 12 M⊕ that we classified as rocky
planets with a dense atmosphere, although we stress that this
mass boundary is quite arbitrarily. Using the empirical mass-
luminosity relation L∗ ∝ M4

∗ (e.g. Cester et al. 1983) and the
mass-radius relationship for terrestrial planets R ∝ m0.274 (Sotin
et al. 2007), Eq. (6) can be written as:

ωs/n = k (a M∗)2.5m−0.726, (16)

where k is a proportionality coefficient that contains all the con-
stant parameters, but also the parameters that we are unable to
constrain such as H0, k2, ∆tg or ∆ta. In this context, as a first or-
der approximation, we consider that for all these terrestrial plan-
ets, the parameter k has the same value as for Venus. Assuming

Correia,	  Levrard,	  Laskar	  (2008)	  

see	  also	  Gold	  &	  Soter	  (1969),	  Correia,	  Laskar,	  Néron	  de	  
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Eqs. 5, 6 and 7 are coupled by the Coriolis terms in the left-hand
side. To simplify them, we assume the traditional approxima-
tion. This hypothesis is applicable to stratified fluids where the
buoyancy is strong compared to the Coriolis term, which is true
for the Earth for instance. So, we obtain:
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In strongly stratified fluids, the left-hand side of Eq. 10 is usu-
ally ignored because it is very small compared to the terms in
�p and �⇢ in typical waves regimes. The radial acceleration will
only play a role in regimes where the tidal frequency exceeds the
Brunt-Vaisala frequency, which correspond to fast rotators. The
second equation of our system is the conservation of mass,

@⇢

@t
+ r (⇢V) = 0, (11)

that gives:
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The thermal forcing appears in the right-hand side of the lin-
earized heat transport equation,
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+
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g
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⇥

J � �rad
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where  = (�1 � 1) /�1 and �rad is the power per mass unit ra-
diated by the atmosphere, which behaves as a grey body. �rad
is assumed to be proportional to �T , which corresponds to an
optically thin layer approximation and can be written:

�rad =
p0�0

⇢0T0
�T. (14)

�0 is the thermal frequency of the atmosphere. It varies with r
and defines the transition between the dynamical regime (|�| �
�0) where the radiative losses can be ignored and the thermal
regimes (|�| < �0) where they dominate in the heat transport
equation. Assuming that the radiative emission of the gas is pro-
portional to the local molar concentration C0 = ⇢0/M, the sink
term is expressed:

�rad =
8✏a
M

S T 3
0�T, (15)

and the corresponding thermal frequency,

�0 (r) =
8✏a⇢0

Mp0
S T 4

0 , (16)

✏a being the molar emissivity coe�cient of the gas and S =
5.670373 ⇥ 10�8 W.m�2.K�4 the Stefan-Boltzmann constant
(data from NIST). The substitution of Eq. 14 in Eq. 13 yields:
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At the end, the system is closed by the perfect gas law:

�p
p0
=
�T
T0
+
�⇢

⇢0
. (18)

Substituting Eq. 18 in Eq. 17, we eliminate the unknown �T , and
obtain a new equation for heat transport,
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Because of the rotating motion of the planet, a tidal perturbation
is periodical in time and longitude. So, any perturbed quantity f
of our model can be expanded in Fourier series of t and ':

f =
X

�,s

f �,s (✓, z) ei(�t+s'), (20)

� being the tidal frequency of a contribution and s its longitudi-
nal degree. For simplicity, the exponents � and s will be omitted
from now. We also introduce the quantity y = �p/⇢0, which will
be convenient further and the operators of ✓

L✓ ⌘ 1
�

1 � ⌫2 cos2 ✓
�

"

@

@✓
+ s⌫ cot ✓
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, (21)

L' ⌘ 1
�

1 � ⌫2 cos2 ✓
�

"

⌫ cos ✓
@

@✓
+

s
sin ✓

#

, (22)

where ⌫ = 2U/� indicates the regime of waves:

• |⌫| < 1 corresponds to super-inertial waves,
• |⌫| > 1 corresponds to sub-inertial waves.

Under the traditional approximation, the horizontal component
of the velocity field is directly expressed as a function of the
variations of the pressure and tidal gravitational potential:

V✓ =
i
�r
L✓ (y + U) , (23)

V' = � 1
�r
L' (y + U) . (24)

We also get the horizontal component ⇠H of the displacement
vector ⇠ = ⇠rer + ⇠✓e✓ + ⇠�e� = V/ (i�), readily deduced from
Eq. 23 and 24:
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Eqs. 5, 6 and 7 are coupled by the Coriolis terms in the left-hand
side. To simplify them, we assume the traditional approxima-
tion. This hypothesis is applicable to stratified fluids where the
buoyancy is strong compared to the Coriolis term, which is true
for the Earth for instance. So, we obtain:
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In strongly stratified fluids, the left-hand side of Eq. 10 is usu-
ally ignored because it is very small compared to the terms in
�p and �⇢ in typical waves regimes. The radial acceleration will
only play a role in regimes where the tidal frequency exceeds the
Brunt-Vaisala frequency, which correspond to fast rotators. The
second equation of our system is the conservation of mass,
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+ r (⇢V) = 0, (11)

that gives:
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The thermal forcing appears in the right-hand side of the lin-
earized heat transport equation,
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where  = (�1 � 1) /�1 and �rad is the power per mass unit ra-
diated by the atmosphere, which behaves as a grey body. �rad
is assumed to be proportional to �T , which corresponds to an
optically thin layer approximation and can be written:

�rad =
p0�0

⇢0T0
�T. (14)

�0 is the thermal frequency of the atmosphere. It varies with r
and defines the transition between the dynamical regime (|�| �
�0) where the radiative losses can be ignored and the thermal
regimes (|�| < �0) where they dominate in the heat transport
equation. Assuming that the radiative emission of the gas is pro-
portional to the local molar concentration C0 = ⇢0/M, the sink
term is expressed:

�rad =
8✏a
M

S T 3
0�T, (15)

and the corresponding thermal frequency,

�0 (r) =
8✏a⇢0

Mp0
S T 4

0 , (16)

✏a being the molar emissivity coe�cient of the gas and S =
5.670373 ⇥ 10�8 W.m�2.K�4 the Stefan-Boltzmann constant
(data from NIST). The substitution of Eq. 14 in Eq. 13 yields:
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At the end, the system is closed by the perfect gas law:
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p0
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+
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. (18)

Substituting Eq. 18 in Eq. 17, we eliminate the unknown �T , and
obtain a new equation for heat transport,
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Because of the rotating motion of the planet, a tidal perturbation
is periodical in time and longitude. So, any perturbed quantity f
of our model can be expanded in Fourier series of t and ':

f =
X

�,s

f �,s (✓, z) ei(�t+s'), (20)

� being the tidal frequency of a contribution and s its longitudi-
nal degree. For simplicity, the exponents � and s will be omitted
from now. We also introduce the quantity y = �p/⇢0, which will
be convenient further and the operators of ✓
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, (22)

where ⌫ = 2U/� indicates the regime of waves:

• |⌫| < 1 corresponds to super-inertial waves,
• |⌫| > 1 corresponds to sub-inertial waves.

Under the traditional approximation, the horizontal component
of the velocity field is directly expressed as a function of the
variations of the pressure and tidal gravitational potential:

V✓ =
i
�r
L✓ (y + U) , (23)

V' = � 1
�r
L' (y + U) . (24)

We also get the horizontal component ⇠H of the displacement
vector ⇠ = ⇠rer + ⇠✓e✓ + ⇠�e� = V/ (i�), readily deduced from
Eq. 23 and 24:
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Eqs. 5, 6 and 7 are coupled by the Coriolis terms in the left-hand
side. To simplify them, we assume the traditional approxima-
tion. This hypothesis is applicable to stratified fluids where the
buoyancy is strong compared to the Coriolis term, which is true
for the Earth for instance. So, we obtain:
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. (10)

In strongly stratified fluids, the left-hand side of Eq. 10 is usu-
ally ignored because it is very small compared to the terms in
�p and �⇢ in typical waves regimes. The radial acceleration will
only play a role in regimes where the tidal frequency exceeds the
Brunt-Vaisala frequency, which correspond to fast rotators. The
second equation of our system is the conservation of mass,

@⇢

@t
+ r (⇢V) = 0, (11)

that gives:
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The thermal forcing appears in the right-hand side of the lin-
earized heat transport equation,
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where  = (�1 � 1) /�1 and �rad is the power per mass unit ra-
diated by the atmosphere, which behaves as a grey body. �rad
is assumed to be proportional to �T , which corresponds to an
optically thin layer approximation and can be written:

�rad =
p0�0

⇢0T0
�T. (14)

�0 is the thermal frequency of the atmosphere. It varies with r
and defines the transition between the dynamical regime (|�| �
�0) where the radiative losses can be ignored and the thermal
regimes (|�| < �0) where they dominate in the heat transport
equation. Assuming that the radiative emission of the gas is pro-
portional to the local molar concentration C0 = ⇢0/M, the sink
term is expressed:

�rad =
8✏a
M

S T 3
0�T, (15)

and the corresponding thermal frequency,

�0 (r) =
8✏a⇢0

Mp0
S T 4

0 , (16)

✏a being the molar emissivity coe�cient of the gas and S =
5.670373 ⇥ 10�8 W.m�2.K�4 the Stefan-Boltzmann constant
(data from NIST). The substitution of Eq. 14 in Eq. 13 yields:
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At the end, the system is closed by the perfect gas law:
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p0
=
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+
�⇢

⇢0
. (18)

Substituting Eq. 18 in Eq. 17, we eliminate the unknown �T , and
obtain a new equation for heat transport,
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(19)

Because of the rotating motion of the planet, a tidal perturbation
is periodical in time and longitude. So, any perturbed quantity f
of our model can be expanded in Fourier series of t and ':

f =
X

�,s

f �,s (✓, z) ei(�t+s'), (20)

� being the tidal frequency of a contribution and s its longitudi-
nal degree. For simplicity, the exponents � and s will be omitted
from now. We also introduce the quantity y = �p/⇢0, which will
be convenient further and the operators of ✓
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, (21)
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, (22)

where ⌫ = 2U/� indicates the regime of waves:

• |⌫| < 1 corresponds to super-inertial waves,
• |⌫| > 1 corresponds to sub-inertial waves.

Under the traditional approximation, the horizontal component
of the velocity field is directly expressed as a function of the
variations of the pressure and tidal gravitational potential:

V✓ =
i
�r
L✓ (y + U) , (23)

V' = � 1
�r
L' (y + U) . (24)

We also get the horizontal component ⇠H of the displacement
vector ⇠ = ⇠rer + ⇠✓e✓ + ⇠�e� = V/ (i�), readily deduced from
Eq. 23 and 24:
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Eqs. 5, 6 and 7 are coupled by the Coriolis terms in the left-hand
side. To simplify them, we assume the traditional approxima-
tion. This hypothesis is applicable to stratified fluids where the
buoyancy is strong compared to the Coriolis term, which is true
for the Earth for instance. So, we obtain:
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In strongly stratified fluids, the left-hand side of Eq. 10 is usu-
ally ignored because it is very small compared to the terms in
�p and �⇢ in typical waves regimes. The radial acceleration will
only play a role in regimes where the tidal frequency exceeds the
Brunt-Vaisala frequency, which correspond to fast rotators. The
second equation of our system is the conservation of mass,
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that gives:
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The thermal forcing appears in the right-hand side of the lin-
earized heat transport equation,
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where  = (�1 � 1) /�1 and �rad is the power per mass unit ra-
diated by the atmosphere, which behaves as a grey body. �rad
is assumed to be proportional to �T , which corresponds to an
optically thin layer approximation and can be written:

�rad =
p0�0

⇢0T0
�T. (14)

�0 is the thermal frequency of the atmosphere. It varies with r
and defines the transition between the dynamical regime (|�| �
�0) where the radiative losses can be ignored and the thermal
regimes (|�| < �0) where they dominate in the heat transport
equation. Assuming that the radiative emission of the gas is pro-
portional to the local molar concentration C0 = ⇢0/M, the sink
term is expressed:

�rad =
8✏a
M

S T 3
0�T, (15)

and the corresponding thermal frequency,

�0 (r) =
8✏a⇢0

Mp0
S T 4

0 , (16)

✏a being the molar emissivity coe�cient of the gas and S =
5.670373 ⇥ 10�8 W.m�2.K�4 the Stefan-Boltzmann constant
(data from NIST). The substitution of Eq. 14 in Eq. 13 yields:
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At the end, the system is closed by the perfect gas law:
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Substituting Eq. 18 in Eq. 17, we eliminate the unknown �T , and
obtain a new equation for heat transport,
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Because of the rotating motion of the planet, a tidal perturbation
is periodical in time and longitude. So, any perturbed quantity f
of our model can be expanded in Fourier series of t and ':

f =
X

�,s

f �,s (✓, z) ei(�t+s'), (20)

� being the tidal frequency of a contribution and s its longitudi-
nal degree. For simplicity, the exponents � and s will be omitted
from now. We also introduce the quantity y = �p/⇢0, which will
be convenient further and the operators of ✓

L✓ ⌘ 1
�

1 � ⌫2 cos2 ✓
�

"

@

@✓
+ s⌫ cot ✓

#

, (21)

L' ⌘ 1
�

1 � ⌫2 cos2 ✓
�

"

⌫ cos ✓
@

@✓
+

s
sin ✓

#

, (22)

where ⌫ = 2⌦/� indicates the regime of waves:

• |⌫| < 1 corresponds to super-inertial waves,
• |⌫| > 1 corresponds to sub-inertial waves.

Under the traditional approximation, the horizontal component
of the velocity field is directly expressed as a function of the
variations of the pressure and tidal gravitational potential:

V✓ =
i
�r
L✓ (y + U) , (23)

V' = � 1
�r
L' (y + U) . (24)

We also get the horizontal component ⇠H of the displacement
vector ⇠ = ⇠rer + ⇠✓e✓ + ⇠�e� = V/ (i�), readily deduced from
Eq. 23 and 24:
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temperature and exponentially decaying profiles of the pressure
and density. Literally,

p0 (x) = p0 (0) e�x, ⇢0 (x) =
p0 (0)
gH

e�x, T0 =
gH
Rs
. (89)

In this case, which corresponds to an isothermal atmosphere,
95 % of the mass of the gas is contained within the interval
x 2 [0, 3]. So, Hatm ⇡ 3H. For the Earth, H = 7.6 km (Chap-
man & Lindzen 1970) and Hatm = 22.8 km.

3.2. Wave equation and polarization relations

The constant H hypothesis is very useful to simplify the com-
plex expressions of section 2. The typical frequencies of the sys-
tem do not vary with the radial coordinate any more. The Brunt-
Vaisala frequency is simply expressed:

N =
r

g

H
, (90)

and the acoustic frequency associated to the mode (⌫, s, n),

�s;n =
p

⇤n
cs

R
. (91)

Moreover, the horizontal structure does not change because the
Laplace’s tidal equation is not modified. So, the vertical struc-
ture equation and the polarization relations only are a↵ected by
the constant H hypothesis. The coe�cients defined in Eq. 37 be-
come:
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(92)

with the complex factor:

K = 1 � "s;n
i��1 + �0

i� + �0
. (93)

Note that the logarithmic term A in Eq. 38 vanishes because
of the shallow atmosphere approximation, the coe�cient B1
(Eq. 35) being a constant in this case. Let us introduce the com-
plex vertical wave number �n,

�2
n =

1
4

"

&n

 

i�
i� + �0

N2

�2 + "s;n � 1
!

� 1
#

, (94)

with the scale ratio &n = 4H2⇤n/R2, which can also be written:

�2
n =

1
4

"

i�
i� + �0

4H
hn
� 1 + &n

�

"s;n � 1
�

#

, (95)

where hn = R2�2/ (g⇤n) is often called the equivalent depth
in literature (Taylor 1936; Chapman & Lindzen 1970) and rep-
resents the scale length associated to the oscillation. The term
&n

�

"s;n � 1
�

comes from the radial acceleration in the Navier-
Stokes equation (Eq. 10). It is negligible when |�| ⌧ �s,

�s =
1
2

r

�1g

H
(96)

being the acoustic frequency of the atmosphere, of the same
magnitude order as the Brunt-Vaisala frequency (Eq. 90). This
condition is verified here because using the traditional approx-
imation requires that |�| ⌧ N, which is true for fast rotators
such as the Earth. Therefore, by considering the case where
�0 ⌧ |�| ⌧ �s, we retrieve the wave number obtained by Chap-
man & Lindzen (1970). The equation giving the vertical profiles
(Eq. 41) becomes:

d2 n

dx2 + �
2
n n = H2e�x/2C (x) . (97)

Contrary to the wave number of the thick shell (Eq. 41), �n now
does not vary with x. Moreover, if the condition
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�
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i� + �0

�

�

�

�

�

, (98)

is satisfied, then the perturbation is dominated by thermal tides
and the contribution of the gravitational tidal potential can be
ignored in Eq. 97, which is rewritten:

d2 n

dx2 +
1
4

"

i�
i� + �0

4H
hn
� 1

#

 n =
H⇤n

i� + �0

"

K Jn + �1"s;n
dJn

dx

#

e�
x
2 .

(99)

The polarization relations of the thin atmospheric shell are de-
duced from Eq. 43 to 52:

⇠r;n =
1

R2 e
x
2 n, (100)
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1

�2R
�
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,
(101)
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�2R
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,
(102)

Vr;n =
i�
R2 e

x
2 n, (103)

V✓;n =
i

�R
�

1 � "s;n
�

(

�2

H⇤n
e

x
2

"

d n

dx
+A n

#

� �1 � 1
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�2

�2
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Jn � "s;nUn

)

,
(104)
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Schrödinger-‐like	  equation	  

Thermal	  frequency	  

VELOCITY	  FIELD	  

PRESSURE	  

DENSITY	  

TEMPERATURE	  

DISPLACEMENT	  
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Spatial	  distribution	  of	  perturbed	  quantities	  
(preliminary	  results)	  
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Semi-‐diurnal	  tide	  Pressure	  peak	  

In	  good	  agreement	  with	  the	  GCM	  simulations	  of	  Leconte,	  Wu,	  Menou,	  Murray	  (2015)	  	  
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Comparison	  with	  measures	  
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Earth’s	  semi-‐diurnal	  tide	  

Pressure	  peak	  
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Conclusions	  and	  prospects	  
•  Earth’s	  semi-‐diurnal	  tide	  explained	  by	  the	  analytical	  model	  

•  Identification	  of	  tidal	  regimes	  	  

•  Dependence	  of	  the	  tidal	  torque	  on	  the	  tidal	  frequency	  

•  Exploration	  of	  the	  domain	  of	  parameters	  	  

•  Application	  to	  Venus	  and	  typical	  super-‐Earths	  

	  

•  Coupling	  with	  solid	  tides	  models	  (cf.	  Remus	  &	  al.	  2012)	  

13	  Towards a new model of atmospheric tides 
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