Towards a new model of atmospheric tides: from Venus to super-Earths

Pierre Auclair-Desrotour, Jacques Laskar (IMCCE), Stéphane Mathis (CEA)

$31^{\text {st }}$ International Colloquium of the Institut d'Astrophysique de Paris, June $29^{\text {th }}-$ July $3^{\text {rd }}$

Introduction

State of the art

Atmospheric tidal dissipation little understood and poorly quantified!

A non-exhaustive history of theoretical works dealing with atmospheric tides:
\rightarrow Atmospheric tides of the Earth
> Chapman \& Lindzen (1970)
\rightarrow Spin equilibrium
$>$ Gold \& Soter (1969), Correia, Laskar, Néron de Surgy (2001), Correia \& Laskar (2003), Correia, Levrard, Laskar (2008)
\rightarrow Atmosphere of super-Earths
> Forget \& Leconte (2014)

Tidal effects in super-Earths

Equilibrium states: a torques balance

Need for a realistic physical modeling of atmospheric tides!

Tidal waves properties

Atmospheric tides dynamics

Inertia frequency
$\left.\frac{\partial V_{\theta}}{\partial t}-2 \Omega\right)_{\varphi} \cos \theta=-\frac{1}{r} \frac{\partial}{\partial \theta}(\frac{\delta p}{\rho_{0}}+\underbrace{U}_{\text {Gravitational forcing }}$
$\frac{\partial V_{\varphi}}{\partial t}+2 \Omega \cos \theta V_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}\left(\frac{\delta p}{\rho_{0}}+U\right)$,
$\rho_{0} \frac{\partial V_{r}}{\partial t}=-\frac{\partial \delta p}{\partial r}-g \delta \rho-\rho_{0} \frac{\partial U}{\partial r}$.
$\frac{\partial \delta \rho}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \rho_{0} V_{r}\right)+\frac{\rho_{0}}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta V_{\theta}\right)+\frac{\partial V_{\varphi}}{\partial \varphi}\right]=0$
Thermal forcing
$\frac{1}{\Gamma_{1} p_{0}}\left(\frac{\partial \delta p}{\partial t}+\Gamma_{1} \sigma_{0} \delta p\right)+N_{g}^{2} \frac{\partial \xi_{r}}{\partial t}=\frac{\kappa \rho_{0}}{p_{0}} J+\frac{1}{\rho_{0}}\left(\frac{\partial \delta \rho}{\partial t}+\sigma_{0} \partial \rho\right)$
Brunt-Väisälä frequency

Thermal frequency

Reference model:
Chapman \& Lindzen (1970)

Navier Stokes

Conservation of mass

Heat transport

Added terms

Horizontal structure

$$
\begin{aligned}
\delta p=\sum_{\sigma, s} \delta p^{\sigma, s}(\theta, x) e^{i(\sigma t+s \varphi)} \\
\square \delta p^{\sigma, s}=\sum_{n} \delta p_{n}(x) \Theta_{n}(\theta) \\
\text { Radial profiles Hough functions }
\end{aligned}
$$

Expansion in Fourier series

Expansion in Hough functions

Laplace's tidal equation

$$
\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\frac{\nu^{2} \sin \theta}{1-\nu^{2} \cos ^{2} \theta} \frac{\partial}{\partial \theta}\right)-\frac{\nu^{2}}{1-\nu^{2} \cos ^{2} \theta}\left(s \nu \frac{1+\nu^{2} \cos ^{2} \theta}{1-\nu^{2} \cos ^{2} \theta}+\frac{s^{2}}{\sin ^{2} \theta}\right)\right] \Theta_{n}=-\Lambda_{n} \Theta_{n}
$$

Vertical structure

Frequency regimes: comparison with Chapman \& Lindzen

Spatial distribution of perturbed quantities (preliminary results)

In good agreement with the GCM simulations of Leconte, Wu, Menou, Murray (2015)

Conclusions and prospects

- Earth's semi-diurnal tide explained by the analytical model
- Identification of tidal regimes
- Dependence of the tidal torque on the tidal frequency
- Exploration of the domain of parameters
- Application to Venus and typical super-Earths
- Coupling with solid tides models (cf. Remus \& al. 2012)
. Publication A\&A in preparation

