

Nikolay Nikolov and the HST Team

1 AVAILAVA VELA

Collaborators:

D. K. Sing (PI) F. Pont T. Kataria T. M. Evans H. R. Wakeford N. Nikolov A. S. Burrows J. J. Fortney G. E. Ballester C. M. Huitson J.-M. Desert P.A.Wilson S.Aigrain D. Deming N. P. Gibson G.W. Henry H. Knutson A. Lecavelier des Etangs A. P. Showman A.Vidal-Madjar K. Zahnle

University of Exeter **Princeton University** UC Santa Cruz University of Arizona University of Colorado University of Colorado **CNRS**, Paris University of Oxford University of Maryland ESO Tennessee SU Caltech **CNRS**, Paris University of Arizona **CNRS**, Paris NASA

STIS: optical G430L & G750L (0.3-1 μm) WFC3: near-IR G141 Spitzer/IRAC 3.6 μm and 4.5 μm

Published results for: WASP-19b,WASP-12b, HAT-P-1b,WASP-31b,WASP-6b; two more in preparation;

<u>Aims:</u> (i) compare atmospheric properties; (ii) detect strong absorbers (e.g. Na, K, TiO, hazes, clouds, etc.); (iii) probe atmospheric diversities.

	Table 1. Ho	(T _{eff} is estimated equilibrium temperature)							
	Target	Period (days)	R _{planet} (Jup)	M _{planet} (Jup)	T _{eff} (K)	g (m/s ²)	Irradiation (ergs/s/cm ²)	V _{mag}	H (km)
	Hat-P-12b	3.21	0.96	0.21	1080	5.7	2.2E+08	12.8	680
Nikolov et al. 2015	Wasp-6b	3.36	1.22	0.50	1340	8.3	5.2E+08	11.9	580
	Wasp-39b	4.05	1.27	0.28	1360	4.3	5.00E+08	12.1	1140
Vakeford et al. 2013 Nikolov et al. 2014	Hat-P-1b	4.46	1.20	0.53	1500	9.1	7.3E+08	10.4	580
Sing et al. 2015	Wasp-31b	3.4	1.54	0.48	1800	5.02	1.50E+09	11.7	1280
llester et al. in prep.	Wasp-17b	3.74	1.74	0.49	1860	4.0	1.9E+09	11.6	1670
Huitson et al. 2013	Wasp-19b	2.15	1.15	1.31	2319	16.6	4.10E+09	12.3	501
Sing et al. 2013	Wasp-12b	1.09	1.79	1.41	2800	11.0	1.0E+10	11.69	930

N. Nikolov University of Exeter

B

HST STIS

N. Nikolov University of Exeter

Our pipeline

University of Exeter

June 29th - July 3rd 2015, IAP, Paris

Three facts for WASP-17b

Orbital Period ~ 3.7 d Mp ~ 1.6 M_{Saturn}, Rp ~ 2 R_{Jupiter} ~ 6 % Jupiter density

 $T(4.5 \ \mu m) = 1880 + /-50 \ K$ $T(8 \ \mu m) = 1580 + /-150 \ K$ low albedo; efficient T redistrib.

From Super-Earths to Brown Dwarfs: Who's Who? June 29th - July 3rd 2015, IAP, Paris

Va.

University of Exeter

WASP-17b

Ballester et al. in prep.

Quick facts for WASP-31b

2010

Anderson et al.

Orbital Period ~ 3.4 d $Mp \sim 0.5 M_{Jupiter}$ $Rp = 1.5 R_{Jupiter}$ 13 % Jupiter density $T_{eq} = 1600 K, H \sim 1200 km$

Parent star Sp type: F6, V = 11.7

> From Super-Earths to Brown Dwarfs: Who's Who? June 29th - July 3rd 2015, IAP, Paris

N. Nikolov University of Exeter

Two facts for WASP-6b

Orbital Period ~ 3.4 d $Mp \sim 0.5 M_{Jupiter}$ $Rp \sim 1.2 R_{Jupiter}$ $T_{eq} = 1145 K$

Parent star Sp type: G8, [Fe/H]=-0.2 V = 11.9

N. Nikolov University of Exeter

From Super-Earths to Brown Dwarfs: Who's Who? June 29th - July 3rd 2015, IAP, Paris

$H_2O = H_2O = CO$

WASP-17b

Ballester et al. (in prep.)

N. Nikolov University of Exeter

Conclusions:

(1) WASP-17b, -31b and -6b show evidence for cloud-free, cloudy and hazy atmosphere, i.e. an emerging diversity of exoplanet atmospheres;

(2) We find a significant variation in both the Na and K frequency and the Na/K abundance ratio across the targets;

(3) Cloudy and hazy atmospheres can provide important atmospheric constraints, i.g. particle sizes, temperatures, etc.;

(4) More planets must be studied in transmission to establish correlations between atmospheric and planetary physical properties, e.g. atmospheric type and planet evolutionary history.

N. Nikolov University of Exeter