Transitions in Efficiency of Heat

 Redistribution in Hot Jupiter Atmospheres
Thaddeus D. Komacek and Adam P. Showman

${ }^{1}$ Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona

\mathbb{A}
THE UNIVERSITY OF ARIZONA
$31^{\text {st }}$ International Colloquium of the Paris Institute of Astrophysics

$$
\text { July } 3^{r d}, 2015
$$

Department of Planetary Sciences Lunar and Planetary Laboratory

Transitions of Day-Night

Temperature Differences in Hot Jupiter Atmospheres

Thaddeus D. Komacek

 and Adam P. Showman${ }^{1}$ Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona

\mathbb{A}
THE UNIVERSITY OF ARIZONA
$31^{\text {st }}$ International Colloquium of the Paris Institute of Astrophysics

$$
\text { July } 3^{r d}, 2015
$$

Department of Planetary Sciences Lunar and Planetary Laboratory

Hot Jupiters

Short spin-down timescale:
$\tau \sim 1 \times 10^{6}\left(\frac{Q}{10^{5}}\right)\left(\frac{a_{\text {orb }}}{0.05 \mathrm{AU}}\right)^{6} \mathrm{yr}$

Dayside-nightside temperature differences are
forcing amplitude of
 atmospheric circulation
Showman \& Guillot (2002), Showman et al. (2015)

Phase Curves: Dayside-Nightside Temperature Differences

Day-night temperature differences correlate with T_{eq}

Increasing
Day-Night Temperature Difference

See also: Cowan and Agol (2011), Perez-Becker \& Showman (2013)

Phase Curves: Fast Zonal Winds

HD 189733b

HD 209458b

Models and observations show peak flux before secondary eclipse
-Strong ($\sim \mathrm{km} / \mathrm{s}$) winds advect hottest point eastward of substellar point

Initial idea: competition between advection by winds and radiation:

High day-night differences when: $\tau_{\text {rad }} \ll \tau_{\text {adv }}$ Low day-night differences when: $\tau_{\text {rad }} \gg \tau_{\text {adv }}$

Would expect faster winds with increasing $\mathrm{T}_{\mathrm{eq}}{ }^{-}$ other timescales Showman \& Guillot (2002) must matter!

Initial idea: competition between advection by winds and radiation:

High day-night differences when: $\tau_{\text {rad }} \ll \tau_{\text {adv }}$

Low day-night differences when: $\tau_{\mathrm{rad}} \gg \tau_{\text {adv }}$

Perez-Becker \& Showman (2013) showed that wave adjustment mediates daynight temperature differences

Wave Adjustment

Initialize with hot dayside

Waves propagate across planet

Day-night temperature differences reduced Showman et al. (2013)

Wave adjustment damped due to radiative forcing or drag, explains trend

Wave Adjustment: Hot Jupiters

For hot Jupiters, Rossby deformation radius:

$$
L_{D} \sim \frac{N H}{\Omega}
$$

is comparable to the planetary radius.

Wave adjustment will be global in scale
Showman et al. (2013)

1
Wave adjustment damped due to radiative forcing or drag, explains trend

Model

Utilize 3D primitive equations of meteorology -Consider varying strengths of radiative forcing and friction, both of which damp wave propagation

Newtonian cooling:

Rayleigh Drag:
$\mathcal{F}_{\text {drag }}=-\frac{\mathbf{V}}{\tau_{\text {drag }}}$

Vary timescales by ${ }^{10^{-3}}$ >4 orders of magnitude in numerical simulations

Numerical Results

Numerical Results

$\mathbf{P}=80$ mbars ${ }_{8}$ Contours: $\Delta T / \Delta T_{\mathrm{eq}}$
Increasing radiative damping

Analytic Theory

We have developed theory that predicts day-night temperature differences and wind speeds
Solve for day-night temperature differences relative to equilibrium day-night difference:

Theory: Approximate Equations

Need to assume given dominant terms in energy and momentum equations and couple them:
Which heating terms balance linear cooling?
$\frac{d T}{d t}=\frac{\partial T}{\partial t}+\mathbf{v} \cdot \nabla T+\omega \frac{\partial T}{\partial p}=-\frac{T-T_{\mathrm{eq}}}{\tau_{\mathrm{rad}}}+\frac{\omega}{\rho c_{p}}$

What balances day-night pressure gradients? -Advection, Coriolis force, or drag

$$
-\nabla \Phi=\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}+\omega \frac{\partial \mathbf{v}}{\partial p}+f \hat{\mathbf{k}} \times \mathbf{v}-
$$

$$
\tau_{\mathrm{drag}}
$$

Need to assume given dominant terms in energy and momentum equations and couple them:
Which heating terms balance linear cooling?
$\left.\frac{d T}{d t}=\right\rangle_{\omega}^{D T}+\mathbf{v} \cdot \nabla T+\omega \frac{\partial T}{\partial p}=-\frac{T-T_{\mathrm{eq}}}{\tau_{\mathrm{rad}}}+\frac{\omega}{\rho c_{p}}$
-Run models to equilibration (steady-state)

What balances day-night pressure gradients? -Advection, Coriolis force, or drag
$-\nabla \Phi=\rangle_{\partial}+\mathbf{v} \cdot \nabla \mathbf{v}+\omega \frac{\partial \mathbf{v}}{\partial p}+f \hat{\mathbf{k}} \times \mathbf{v}-$ τ_{drag}

Need to assume given dominant terms in energy and momentum equations and couple them:
Which heating terms balance linear cooling?

-Weak temperature gradient regime
-Tied closely to wave adjustment in Earth's tropics (Sober et al. 2001)

What balances day-night pressure gradients? -Advection, Coriolis force, or drag
$-\nabla \Phi=\boldsymbol{\gamma}_{\mathbf{v}}+\mathbf{v} \cdot \nabla \mathbf{v}+\omega \frac{\partial \mathbf{v}}{\partial p}+f \hat{\mathbf{k}} \times \mathbf{v}-$ $\tau_{\text {drag }}$

Need to assume given dominant terms in energy and momentum equations and couple them:
Which heating terms balance linear cooling?

$$
\frac{\Delta T_{\mathrm{eq}}-\Delta T}{\tau_{\mathrm{rad}}} \sim \frac{\mathcal{W} N^{2} H}{R}
$$

-Weak temperature gradient regime
-Tied closely to wave adjustment in Earth's tropics (Sober et al. 2001)

What balances day-night pressure gradients?
-Advection, Coriolis force, or drag
$R \Delta T$

$$
\left[\frac{\mathcal{U}^{2}}{a}, \frac{\mathcal{U} \mathcal{W}}{H}, \mathcal{U} \Omega, \frac{\mathcal{U}}{\tau_{\text {drag }}}\right]
$$

Need to assume given dominant terms in energy and momentum equations and couple them:
Which heating terms balance linear cooling?

$$
\frac{\Delta T_{\mathrm{eq}}-\Delta T}{\tau_{\mathrm{rad}}} \sim \frac{\mathcal{W} N^{2} H}{R}
$$

-Weak temperature gradient regime
-Tied closely to wave adjustment in Earth's tropics (Sober et al. 2001)

What balances day-night pressure gradients?
-Advection, Coriolis force, or drag

a

$$
\left[\frac{\mathcal{U}^{2}}{a}, \frac{\mathcal{U} \mathcal{W}}{H}, \mathcal{U} \Omega, \frac{\mathcal{U}}{\tau_{\text {drag }}}\right]
$$

Pressure-Dependent Day-Night Temperature Differences

Phase Curves: Non-Grey Effects

Day-night temperature differences depend on waveband: Photospheres at different pressure levels - C/O ratio?

Conclusions

1) Heat Redistribution in hot Jupiter atmospheres is mediated by wave adjustment
2) Simple analytic theory explains day-night temperature differences

-Transitions in day-night temperature differences controlled by radiative forcing, with $\tau_{\text {rad }} \propto T_{\text {eq }}^{-3}$
3) Non-grey effects play a large role in observed phase curve amplitudes
-Next step: construct a band-grey model to enable comparison with multi-wavelength observations
