Transitions in Efficiency of Heat Redistribution in Hot Jupiter Atmospheres

Thaddeus D. Komacek and Adam P. Showman¹

¹Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona

31st International Colloquium of the Paris Institute of Astrophysics July 3rd, 2015

Department of Planetary Sciences Lunar and Planetary Laboratory

Transitions of Day-Night Temperature Differences in Hot Jupiter Atmospheres **Thaddeus D. Komacek** and Adam P. Showman¹ ¹Department of Planetary Sciences, Lunar and **Planetary Laboratory, University of Arizona**

31st International Colloquium of the Paris Institute of Astrophysics July 3rd, 2015

Department of Planetary Sciences Lunar and Planetary Laboratory

- Heat Redistribution in Hot Jupiter Atmospheres -

2015 IAP Colloquium

Hot Jupiters

- Heat Redistribution in Hot Jupiter Atmospheres -

2015 IAP Colloquium

Phase Curves: Fast Zonal Winds

HD 189733b

HD 209458b

<u>Models and observations show peak flux *before* <u>secondary eclipse</u></u>

-Strong ($\sim km/s$) winds advect hottest point eastward of substellar point

Showman et al. (2009)

Zellem et al. (2014)

What controls day-night temperature differences?

What controls day-night temperature differences?

- Heat Redistribution in Hot Jupiter Atmospheres -

2015 IAP Colloquium

Wave Adjustment

- Heat Redistribution in Hot Jupiter Atmospheres -

2015 IAP Colloquium

Wave Adjustment: Hot Jupiters

1.0

0.0

1000

is comparable to the planetary radius. Wave adjustment will be *global* in scale Showman et al. (2013)

For hot Jupiters,

Rossby deformation

radius:

 $L_D \sim \frac{1}{\Omega}$

NH

Wave adjustment damped due to radiative forcing or drag, explains trend

1500

2000

Equilibrium Temperature (Kelvin)

2500

Model

Utilize 3D primitive equations of meteorology -Consider varying strengths of radiative forcing and friction, both of which damp wave propagation

- Heat Redistribution in Hot Jupiter Atmospheres -

2015 IAP Colloquium

Numerical Results

Analytic Theory

 $\begin{array}{l} \underline{\text{What balances day-night pressure gradients?}}\\ \textbf{-Advection, Coriolis force, or drag}\\ -\nabla \Phi = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + \omega \frac{\partial \mathbf{v}}{\partial p} + f \hat{\mathbf{k}} \times \mathbf{v} - \frac{\mathbf{v}}{\tau_{\text{drag}}} \end{array}$

-Run models to equilibration (steady-state)

Theory: Approximate Equations

Need to assume given dominant terms in energy and momentum equations and couple them:

Which heating terms balance linear cooling?

$$\frac{\Delta T_{\rm eq} - \Delta T}{\tau_{\rm rad}} \sim \frac{\mathcal{W}N^2 H}{R}$$

-Weak temperature gradient regime

-Tied closely to wave adjustment in Earth's tropics (Sobel et al. 2001)

What balances day-night pressure gradients?

Theory: Approximate Equations

Need to assume given dominant terms in energy and momentum equations and couple them:

Which heating terms balance linear cooling?

-Weak temperature gradient regime

-Tied closely to wave adjustment in Earth's tropics (Sobel et al. 2001)

What balances day-night pressure gradients?

Test of the Theory:

Pressure-Dependent Day-Night Temperature Differences

Phase Curves: Non-Grey Effects

Conclusions

- 1) Heat Redistribution in hot Jupiter atmospheres is mediated by *wave adjustment*
- 2) Simple analytic theory explains day-night temperature differences

- -Transitions in day-night temperature differences controlled by radiative forcing, with $\tau_{\rm rad} \propto T_{\rm eq}^{-3}$
- 3) Non-grey effects play a large role in observed phase curve amplitudes
- -Next step: construct a band-grey model to enable comparison with multi-wavelength observations