Exoplanet atmospheres at high spectral resolution

Matteo Brogi

Hubble Fellow, CU-Boulder

I. Snellen, R. de Kok, H. Schwarz (Leiden) J. Birkby (CfA) S. Albrecht (Aarhus) J.-M. Désert (CU-Boulder)

July 3, 2015 From Super-Earths to Brown Dwarfs:Who is Who? IAP, Paris

Molecular fingerprints at high-res

3

Molecules resolved into **individual lines** ⇒ Robust identification via line matching

R = 100,000 Near InfraRed (J- to L-band)

Molecules resolved into **individual lines** ⇒ Robust identification via line matching

Planet motion resolved

- ⇒ Telluric and planet signal disentangled
- \Rightarrow Planet radial velocity can be measured

Wavelength

Time

The Earth's **atmospheric absorption** is **stationary** in wavelength The **planet** moves along the orbit and it is **Doppler-shifted**

5 hours of real data + 20x planet signal (CO)

Wavelength

The Earth's **atmospheric absorption** is **stationary** in wavelength The **planet** moves along the orbit and it is **Doppler-shifted**

5 hours of real data + 20x planet signal (CO)

Wavelength

Cross-correlation with model spectra

The Earth's **atmospheric absorption** is **stationary** in wavelength The **planet** moves along the orbit and it is **Doppler-shifted**

5 hours of real data + 20x planet signal (CO)

Wavelength

Cross-correlation with model spectra

Cross-correlation matrix CCF(RV, *t*) Portion of **planet RV curve**

Planet radial velocity

The Earth's **atmospheric absorption** is **stationary** in wavelength The **planet** moves along the orbit and it is **Doppler-shifted**

5 hours of real data + 20x planet signal (CO)

Wavelength

Cross-correlation with model spectra

Cross-correlation matrix CCF(RV, *t*) Portion of **planet RV curve**

Planet radial velocity

7

7

Stellar mass \Rightarrow Planet mass, orbital inclination

Molecular detections to date

Planet	λ (µm)	T (hours)	S/N	Molecules	Phase	i (deg)	M (M
τ Boo b Brogi+ 2012	2.3	18	6.2	СО	Dayside	44.5±1.5	5.95±0.28
51 Peg b Brogi+ 2013 Birkby+ in prep.	2.3	10	5.9	CO, H	Dayside	>79.6	0.46±0.02
	3.2	5	4.0		Dayside		
HD 179949b Brogi+ 2014	2.3	14	6.5	CO, H	Dayside	68±4	0.98±0.04
HD 189733b de Kok+ 2013 Birkby+ 2013 Brogi+ in prep.	2.3 + 2.0	5+5	5.0	CO, H (CO	Dayside	Known 85.51±0.05	Known 1.14±0.08
	3.2	5	4.8		Dayside		
	2.3	2.5	7-8		Transit		
HD 209458b Snellen+ 2010 Schwarz+ 2015	2.3	5	5.6	CO	Transit	Known 86.59±0.05	Known 0.714±0.022
	2.3	15	-	[CO]	Dayside		

155h - CRIRES @ VLT (8.2m)

Additional science

- Molecular detections
- Global thermal vertical structure (inversion layers)
- Atmospheric C/O ratio (relative molecular abundances)
- Atmospheric dynamics / planet rotation

Additional science

- Molecular detections
- Global thermal vertical structure (inversion layers)
- Atmospheric C/O ratio (relative molecular abundances)
- Atmospheric dynamics / planet rotation

The fast rotation of exoplanet β Pic b Snellen+ 2014

β Pic b rotates in only 8 hours!

Tidally locked on short timescales + global atmospheric patterns (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014)

Tidally locked on short timescales + global atmospheric patterns (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014)

Tidally locked on short timescales + global atmospheric patterns (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014)

Tidally locked on short timescales + global atmospheric patterns (Showman+ 2012; Miller-Ricci Kempton+ 2012, 2014)

Measuring atmospheric circulation of HD 189733b VLT/CRIRES, 2.3µm, R=100,000

> 1 transit, stopped just after egress 1 night lost for bad weather

Testing predictions on HD 189733 b

Modeling the broadening function for the planet line profiles (Brogi+ in prep.)

- Rigid rotation
- Equatorial band super-rotating
- No asymmetries
- No modeling of blue shift

Testing predictions on HD 189733 b

Modeling the broadening function for the planet line profiles (Brogi+ in prep.)

- Rigid rotation
- Equatorial band super-rotating
- No asymmetries
- No modeling of blue shift

- Ingress/egress asymmetric
- Planet profile splits for fast rotations

Caution! Spurious stellar signals

Rossiter-McLaughlin effect on HD 189733 (RM models by Simon Albrecht)

Caution! Spurious stellar signals

Rossiter-McLaughlin effect on HD 189733 (RM models by Simon Albrecht)

If uncorrected, RM produces the dominant CC signature when looking for CO

We modeled, fitted and removed stellar CO lines (*vsini*, LD, line shape, IPs...)

The transmission spectrum of HD189733 b

The transmission spectrum of HD189733 b

Best model: $log_{10}(VMR) = [-5, -4, -7, -5]$ for H₂O, CO, CH₄, CO₂

The synchronous rotation of HD189733 b

Brogi+ in prep.

The synchronous rotation of HD189733 b

Brogi+ in prep.

Fast rotation (P_{rot} < 1d) *strongly disfavored* by data *Weak evidence* for synchronous rotation

(No variations in the signal if equatorial super-rotation is added)

Future prospects

- Try on hotter stars \Rightarrow no stellar noise
- Repeat observations \Rightarrow more S/N
- More baseline \Rightarrow better fit to stellar spectrum
- Apply modeled velocity fields:

Thank you!