

Ο

0

0

 \cap

_ Inti	roduction
• O	Planck 2013 results for inflation summarized
	Basic theoretical assumptions
(Decoupling field and space-time evolution
	The end of inflation and after
	Reheating effects
00	Inflationary perturbations in slow-roll
	Solving for the time of pivot crossing
0	The optimal reheating parameter
	mparison with observations
0	Planck 2013 constraints on slow-roll
	Comparison with model predictions
0 0	Most generic reheating parametrization
0	Ency 🗘 pædia Inflationaris
0	Purpose
	ASPIC $\stackrel{\circ}{ ext{e}}$ xample program with $ ext{LFI}$
00	ASPIC and alternative parameterizations

0

Ο 0 Outline

Model predictions with ASPIC Schwarz Terrero-Escalante classification

Data analysis in model space

Using the slow-roll approximation as a proxy Bayesian model comparison Jeffreys' scale Speeding up evidence calculation Accuracy of ASPIC + effective likelihood Bayes factor for hundred of models And the winners are... Narrowing down the simplest with complexity

Planck constraints on reheating

Posteriors on the reheating parameter Prior-to-posterior width ratio Reheating constraints versus evidence

Perspective

C	CR
	J. Martin, CR and V. Vennin

J. Martin, CR, R. Trotta and V. Vennin arXiv:1312.3529, arXiv:1405.7272 0

arXiv:1312.2347 arXiv:1303.3787, arXiv:1410.7958

- Planck 2013 results for inflation summarized
 Basic theoretical
- assumptions
 Decoupling field and space-time evolution
- The end of infl⊕ion and after
- Reheating effects
 Inflationary
 perturbations in slow-roll
 Solving for the time of
- pivot crossing
- ♦ The optimal reheating parameter

Comparison with observations

Data analysis in model space Planck constraints on reheating

Perspective

Planck 2013 results for inflation summarized

- Favour minimal assumption scenarios
 - Flatness ($\Omega_{\rm K} = 0$) $\Omega_{\rm K} = 1 - \Omega_{\rm dm} - \Omega_{\rm b} - \Omega_{\Lambda} = 0.00^{+0.0066}_{-0.0067}$ (PLANCK+WP+BAO)
 - ♦ Adiabatic initial conditions: isocurvature modes are constrained
 ∀X $P_X(k) = P(k)$
 - Quasi scale invariance of the scalar modes

$$k^{3}P(k) = A\left(\frac{k}{k_{*}}\right)^{n_{\rm S}-1} \Rightarrow n_{\rm S} = 0.9619 \pm 0.0073$$

Gaussianity of the CMB anisotropies $f_{\rm NL}^{\rm loc} = 2.7 \pm 5.8, \quad f_{\rm NL}^{\rm eq} = -42 \pm 75, \quad f_{\rm NL}^{\rm ortho} = -25 \pm 39$

 Planck 2013 results for inflation summarized
 Basic theoretical assumptions

Decoupling field and space-time evolution

♦ The end of infl⊕ion and after

Reheating effects
 Inflationary
 perturbations in slow-roll
 Solving for the time of
 pivot crossing

• The optimal reheating parameter

Comparison with observations

Data analysis in model space Planck constraints on reheating

Perspective

Planck 2013 results for inflation summarized

• Favour minimal assumption scenarios

- Flatness $(\Omega_{\rm K} = 0)$
 - $\Omega_{\rm K} = 1 \Omega_{\rm dm} \Omega_{\rm b} \Omega_{\Lambda} = 0.00^{+0.0066}_{-0.067} \quad (\text{PLANCK+WP+BAO})$

Adiabatic initial conditions: isocurvature modes are constrained
 ∀X P_X(k) = P(k)

• Quasi scale invariance of the scalar modes

 $k^{3}P(k) = A\left(\frac{k}{k_{*}}\right)^{n_{\rm S}-1} \Rightarrow n_{\rm S} = 0.9619 \pm 0.0073$

Gaussiance of the CMB anisotropies

 $f_{\rm L} = 2.7 \pm 5.8, \quad f_{\rm NL}^{\rm eq} = -42 \pm 75, \quad f_{\rm NL}^{\rm ortho} = -25 \pm 39$

- Planck 2013 results for inflation summarized
 Basic theoretical assumptions
- Decoupling field and space-time evolution
- ♦ The end of infl∯ion and after
- Reheating effects
 Inflationary
 perturbations in slow-roll
 Solving for the time of
 pivot crossing
- ✤ The optimal reheating parameter

Comparison with observations

```
Data analysis in model
space
Planck constraints on
reheating
```

Perspective

• • ••

Planck 2013 results for inflation summarized

- Favour minimal assumption scenarios
 - Flatness ($\Omega_{\rm K} = 0$)
 - $\Omega_{\rm K} = 1 \Omega_{\rm dm} \Omega_{\rm b} \Omega_{\Lambda} = 0.00^{+0.0067}_{-0.067}$ (planck+wp+bad)
 - ✦ Adiabatic initial conditions: isocurvature modes are constrained
 ∀X · P_X(k) = P(k)
 - Quasi scale invariance of the scalar modes
 - $k^{3}P(k) = A\left(\frac{k}{k_{*}}\right)^{n_{\rm S}-1} \Rightarrow n_{\rm S} = 0.9619 \pm 0.0073$
 - Gaussiance of the CMB anisotropies

 $f_{\rm TL}^{\rm lo} = 2.7 \pm 5.8, \quad f_{\rm NL}^{\rm eq} = -42 \pm 75, \quad f_{\rm NL}^{\rm ortho} = -25 \pm 39$

- This is also called: single-field slow-roll inflation
 - Makes extra-predictions: $f_{\rm NL}^{\rm loc} = \mathcal{O}(n_{\rm s} 1)$ and $\exists r > 0$

- Planck 2013 results for inflation summarized
 Basic theoretical
- assumptions
- Decoupling field and space-time evolution
- ♦ ⊕e end of inflation and after
- ✤ Reheating effects
- Inflationary perturbations in slow-roll
 Solving for the time of pivot crossing
- ♦ The optimal reheating parameter
- Comparison with observations Data analysis in model space Plance constraints on
- Perspective

0

Basic theoretical assumptions

• Dynamics given by $(\kappa^2 = 1/M_{\rm P}^2)$

 $S = \int dx^4 \sqrt{-g} \left[\frac{1}{2\kappa^2} R + \mathcal{L}(\phi) \right] \quad \text{with} \quad \mathcal{L}(\phi) = -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi)$

- Can be used to describe:
 - Minimally coupled scalar field to General Relativity
 - Scalar-tensor theory of gravitation in the Einstein frame the graviton' scalar partner is also the inflaton (HI, RPI1,...)
- Everything can be consistently solved in the slow-roll approximation
 - Background evolution $\phi(N)$ where $N \equiv \ln a$
 - Linear perturbations for the field-metric system $\zeta(t, \boldsymbol{x})$, $\delta \phi(t, \boldsymbol{x})$
 - Slow-roll = expansion in terms of the Hubble flow functions [Schwarz 01]

$$\epsilon_0 = \frac{H_{\text{ini}}}{H}, \quad \epsilon_{i+1} = \frac{\ln |\epsilon_i|}{\mathrm{d}N}$$
 measure deviations from de-Sitter

 Planck 2013 results for inflation summarized
 Basic theoretical assumptions

Decoupling field and space-time evolution

The end of inflation and after

* Reheating effects

Inflationary
 perturbations in slow-roll
 Solving for the time of pivot crossing

The optimal reheating parameter

Comparison with

Data analysis in model space

 \bigcirc

Planck constraints on reheating

Perspective

•

Decoupling field and space-time evolution

Friedmann-Lemaître equations in e-fold time (with $M_{_{
m P}}^2=1)$

$$\begin{pmatrix} H^2 = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^2 + V \right) \\ \frac{\ddot{a}}{a} = -\frac{1}{3} \left(\dot{\phi}^2 - V \right) \end{pmatrix} \Rightarrow \begin{cases} H^2 = \frac{V}{3 - \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2} \\ -\frac{\mathrm{d}\ln H}{\mathrm{d}N} = \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2 \end{cases} \Leftrightarrow \begin{cases} H^2 = \frac{V}{3 - \epsilon_1} \\ \epsilon_1 = \frac{1}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N} \right)^2 \end{cases}$$

• Klein-Gordon equation in e-folds: relativistic kinematics with friction

$$\frac{1}{3-\epsilon_1}\frac{\mathrm{d}^2\phi}{\mathrm{d}N^2} + \frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{\mathrm{d}\ln V}{\mathrm{d}\phi} \quad \Leftrightarrow \quad \frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{3-\epsilon_1}{3-\epsilon_1+\frac{\epsilon_2}{2}}\frac{\mathrm{d}\ln V}{\mathrm{d}\phi}$$

Slow-roll approximation: all $\epsilon_i = \mathcal{O}(\epsilon)$ and $\epsilon_1 < 1$ is the definition of inflation ($\ddot{a} > 0$)

The trajectory can be solved for N

$$N - N_{\text{end}} \simeq \int_{\phi}^{\phi_{\text{end}}} \frac{V(\psi)}{V'(\psi)} \,\mathrm{d}\psi$$

 Planck 2013 results for inflation summarized
 Basic theoretical assumptions
 Decoupling field and space-time evolution
 The end of inflation and

♦ I he end of inflation and after

- Reheating effects
 Inflationary
 perturbations in slow-roll
 Solving for the time of pivot crossing
- The optimal reheating parameter

Comparison with observations

Data analysis model space Planck constraints on reheating

 \bigcirc

Ο

0

The end of inflation and after

Accelerated expansion stops for $\epsilon_1 > 1$ ($\ddot{a} < 0$) at $N = N_{
m end}$

- Naturally happens during field evolution (graceful exit) at $\phi = \phi_{end}$ $\epsilon_1(\phi_{end}) = 1$
- Or, there is another mechanism ending inflation (tachyonic instability) and ϕ_{end} is a model parameter that has to be specified
- The reheating stage: everything after N_{end} till radiation domination
 - $\blacktriangleright \quad \mathsf{Basic \ picture} \longrightarrow$
 - But in reality a very complicated process, microphysics dependent
 - Reheating duration is unknown:

 $\Delta N_{\rm reh} \equiv N_{\rm reh} - N_{\rm end}$

 Planck 2013 results for inflation summarized
 Basic theoretical O assumptions

Decoupling field and space-time evolution

✤ The end of inflation and after

- Reheating effects
- Inflationary perturbations in slow-roll
- Solving for the time of
- pivot crossing

The optimal reheating parameter

Comparison with observations

Data analysis in model space

Planck constraints on reheating

 \bigcirc

Perspective

 \bigcirc

Redshift at which reheating ends

Denoting $N = N_{reh}$ the end of reheating = beginning of radiation era

• If thermalized, and no extra entropy production: $a_{reh}^3 s_{reh} = a_0^3 s_0$

$$\begin{cases} s_{\rm reh} = q_{\rm reh} \frac{2\pi^2}{45} T_{\rm reh}^3 \\ \rho_{\rm reh} = g_{\rm reh} \frac{\pi^2}{30} T_{\rm reh}^4 \end{cases} \Rightarrow \qquad \frac{a_0}{a_{\rm reh}} = \left(\frac{q_{\rm reh}^{1/3} g_0^{1/4}}{q_0^{1/3} g_{\rm reh}^{1/4}}\right) \frac{\rho_{\rm reh}^{1/4}}{\rho_{\gamma}} \\ \sigma_{\gamma} = \frac{\pi^2}{30} T_{\rm reh}^4 \qquad \sigma_{\gamma} = \left(\frac{\rho_{\rm reh}}{\tilde{\rho}_{\gamma}}\right)^{1/4} \end{cases}$$

Depends on
$$ho_{
m reh}$$
 and $\widetilde
ho_\gamma\equiv {\cal Q}_{
m reh}
ho_\gamma$

- Energy density of radiation today: $\rho_{\gamma} = 3 \frac{H_0^2}{M_p^2} \Omega_{\rm rad}$
- Change in the number of entropy and energy relativistic degrees of freedom (small effect compared to $\rho_{\rm reh}/\rho_{\gamma}$)

$$\mathcal{Q}_{\mathrm{reh}} \equiv rac{g_{\mathrm{reh}}}{g_0} \left(rac{q_0}{q_{\mathrm{reh}}}
ight)^{1/4}$$

- Planck 2013 results for inflation summarized
 Basic theoretical assumptions
- Decoupling field and space-time evolution

The end of inflation and after

- ↔ Reheating effects
- ✤ Inflationary
- perturbations n slow-roll
- Solving for the time of
- ovot crossing
 The optimal reheating
- parameter
- Comparison with observations
- Data analysis in model space
- Planck constraints on reheating
- Perspective

Redshift at which inflation ends

Depends on the redshift of reheating

$$1 + z_{\text{end}} = \frac{a_0}{a_{\text{end}}} = \frac{a_{\text{reh}}}{a_{\text{end}}} (1 + z_{\text{reh}}) = \frac{a_{\text{reh}}}{a_{\text{end}}} \left(\frac{\rho_{\text{reh}}}{\tilde{\rho}_{\gamma}}\right)^{1/4} = \frac{1}{R_{\text{rad}}} \left(\frac{\rho_{\text{end}}}{\tilde{\rho}_{\gamma}}\right)^{1/4}$$

- The reheating parameter $R_{\rm rad} \equiv \frac{a_{\rm end}}{a_{\rm reh}} \left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$
- Encodes any observable deviations from a radiation-like or instantaneous reheating $R_{rad} = 1$
- $R_{
 m rad}$ can be expressed in terms of $(
 ho_{
 m reh}, \overline{w}_{
 m reh})$ or $(\Delta N_{
 m reh}, \overline{w}_{
 m reh})$

$$\ln R_{\rm rad} = \frac{\Delta N_{\rm reh}}{4} (3\overline{w}_{\rm reh} - 1) = \frac{1 - 3\overline{w}_{\rm reh}}{12(1 + \overline{w}_{\rm reh})} \ln\left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right)$$

where
$$\overline{w}_{\rm reh} \equiv \frac{1}{\Delta N_{\rm reh}} \int_{N_{\rm end}}^{N_{\rm reh}} \frac{P(N)}{\rho(N)} dN$$

• A fixed inflationary parameters, $z_{\rm end}$ can still be affected by $R_{\rm rad}$

Reheating effects on inflationary observables

Introduction

 Planck 2013 results for inflation summarized
 Basic theoretical assumptions operation

Decoupling field and space-time evolution

The end of flation and after

Reheating effects

 \bigcirc

• Model testing: reheating effects must be included!

 Planck 2013 results for inflation summarized
 Basic theoretical assumptions

Decoupling field and space-time evolution
The end of inflation and

after

Reheating effects

Inflationary
 perturbations in slow-roll

Solving for the time of pivot crossing

The optimal reheating parameter

Comparison with observations

Data analysis in model space Planck constraints on

reheating

Perspective O

0

C

Inflationary perturbations in slow-roll

Equations of motion for the linear perturbations

$$\mu_{\mathbf{T}} \equiv ah \mu_{\mathbf{S}} \equiv a\sqrt{2}\phi_{,N}\boldsymbol{\zeta} \right\} \Rightarrow \mu_{\mathbf{TS}}'' + \left[k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}}\right]\mu_{\mathbf{TS}} = 0$$

Can be consistently solved using slow-roll and pivot expansion [Stewart:1993,

Gong:2001, Schwarz:2001, Leach:2002, Martin:2002, Habib:2002, Casadio:2005, Lorenz:2008, Martin:2013, Beltran:2013]

$$\begin{aligned} \mathcal{P}_{\zeta} &= \frac{H_{*}^{2}}{8\pi^{2}M_{\mathrm{P}}^{2}\epsilon_{1*}} \left\{ 1 - 2(1+C)\epsilon_{1*} - C\epsilon_{2*} + \left(\frac{\pi^{2}}{2} - 3 + 2C + 2C^{2}\right)\epsilon_{1*}^{2} + \left(\frac{7\pi^{2}}{12} - 6 - C + C^{2}\right)\epsilon_{1*}\epsilon_{2*} \\ &+ \left(\frac{\pi^{2}}{8} - 1 + \frac{C^{2}}{2}\right)\epsilon_{2*}^{2} + \left(\frac{\pi^{2}}{24} - \frac{C^{2}}{2}\right)\epsilon_{2*}\epsilon_{3*} \\ &+ \left[-2\epsilon_{1*} - \epsilon_{2*} + (2 + 4C)\epsilon_{1*}^{2} + (-1 + 2C)\epsilon_{1*}\epsilon_{2*} + C\epsilon_{2*}^{2} - C\epsilon_{2*}\epsilon_{3*} \right] \ln\left(\frac{k}{k_{*}}\right) \\ &+ \left[2\epsilon_{1*}^{2} + \epsilon_{1*}\epsilon_{2*} + \frac{1}{2}\epsilon_{2*}^{2} - \frac{1}{2}\epsilon_{2*}\epsilon_{3*} \right] \ln^{2}\left(\frac{k}{k_{*}}\right) \right\}, \end{aligned}$$

$$\begin{aligned} \mathcal{P}_{h} &= \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{P}}^{2}} \left\{ 1 - 2(1 + C)\epsilon_{1*} + \left[-3 + \frac{\pi^{2}}{2} + 2C + 2C^{2} \right]\epsilon_{1*}^{2} + \left[-2 + \frac{\pi^{2}}{12} - 2C - C^{2} \right]\epsilon_{1*}\epsilon_{2*} \\ &+ \left[-2\epsilon_{1*} + (2 + 4C)\epsilon_{1*}^{2} + (-2 - 2C)\epsilon_{1*}\epsilon_{2*} \right] \ln\left(\frac{k}{k_{*}}\right) + \left(2\epsilon_{1*}^{2} - \epsilon_{1*}\epsilon_{1*}\right) \ln^{2}\left(\frac{k}{k_{*}}\right) \right\} \end{aligned}$$

$$\begin{aligned} \mathbf{Notice that:} \quad H_{*} \equiv H(N_{*}) \text{ and } \epsilon_{i*} \equiv \epsilon_{i}(N_{*}) \text{ with } k_{*}\eta(N_{*}) = -1 \end{aligned}$$

- Planck 2013 results for inflation summarized
 Basic theoretical assumptions
- Decoupling field and space-time evolution
- ✤ The end of inflation and after
- Reheating effects
- ✤ Inflationary
- Perturbations in slow-roll
 Solving for the time of pivot crossing
- The optimal reheating parameter
- Comparison with observations
- Data analysis in model space
- Planck constraints on reheating O

 \bigcirc

Perspective

 \bigcirc

Solving for the time of pivot crossing

To make inflationary predictions, one has to solve $k_*\eta_*=-1$

$$\frac{k_*}{a_0} = \frac{a(N_*)}{a_0} H_* = e^{N_* - N_{\text{end}}} \frac{a_{\text{end}}}{a_0} H_* = \frac{e^{\Delta N_*} H_*}{1 + z_{\text{end}}} = e^{\Delta N_*} R_{\text{rad}} \left(\frac{\rho_{\text{end}}}{\tilde{\rho}_{\gamma}}\right)^{-\frac{1}{4}} H_*$$

- Defining $N_0 \equiv \ln\left(\frac{k_*}{a_0}\frac{1}{\tilde{\rho}_{\gamma}^{1/4}}\right)$ (number of e-folds of deceleration)
 - This is a non-trivial integral equation that depends on: model + how inflation ends + reheating + data

$$-\left[\int_{\phi_{\text{end}}}^{\phi_{*}} \frac{V(\psi)}{V'(\psi)} d\psi\right] = \ln R_{\text{rad}} - N_{0} + \frac{1}{4} \ln(8\pi^{2}P_{*}) \\ -\frac{1}{4} \ln \left\{\frac{9}{\epsilon_{1}(\phi_{*})[3 - \epsilon_{1}(\phi_{\text{end}})]} \frac{V(\phi_{\text{end}})}{V(\phi_{*})}\right\}$$

• Arbitrarily fixing ΔN_* (or ϕ_*) = postulating a generally wrong solution to this trivial equation!

 Planck 2013 results for inflation summarized
 Basic theoretical
 Basumptions
 Decoupling field and

space-time evolution The end of inflation and after

✤ Reheating effects

Inflationary perturbations in slow-roll

Solving for the time of

pivot crossing O

The optimal reheating parameter

Omparison with observations Data analysis in model space

Planck constraints on reheating

 \bigcirc

 \bigcirc

Perspectiveo

The optimal reheating parameter

Defining the rescaled reheating parameter (astro-ph/0605367)

$$\ln \mathbf{R_{reh}} \equiv \ln R_{rad} + \frac{1}{4} \ln \rho_{end}$$

+ Within a given model, one-to-one correspondance between $R_{\rm rad}$ and $R_{\rm reh}$

"'Magic" cancellation in the reheating equation (also valid out of slow-roll)

$$-\left[\int_{\phi_{\text{end}}}^{\phi_*} \frac{V(\psi)}{V'(\psi)} \mathrm{d}\psi\right] = \ln \mathbf{R}_{\text{reh}} - N_0 - \frac{1}{2} \ln \left[\frac{9}{3 - \epsilon_1(\phi_{\text{end}})} \frac{V(\phi_{\text{end}})}{V(\phi_*)}\right]$$

Using R_{reh} avoids correlations with P_{*} in performing data analysis
 Assuming -1/3 < w
 ⁻_{reh} < 1 and ρ_{nuc} ≡ (10 MeV)⁴ < ρ_{reh} < ρ_{end}

$$-46 < \ln \frac{R_{\rm reh}}{R_{\rm reh}} < 15 + \frac{1}{3} \ln \rho_{\rm end}$$

Comparison with observations

Planck 2013 constraints on slow-roll

Comparison with model predictions

Most generic reheating parametrization

 \bigcirc

Encyclopædia
Inflationaris

* Purpose

*ASPIC example program with LFI

ASPIC and alternative parameterizations

Model predictions with ASPIC

♦ Schwarz

Terrero-Escalante classification

Data analysis in model space

Plance constraints on reheating

Perspective

0

Comparison with observations

Comparison with observations Planck 2013 constraints on slow-roll

 Comparison with model predictions

• Most generic reheating parametrization

Encyclopædia
 Inflationaris

* Purpese

ASPIC example
 program with LFI
 ASPIC and alternative

parameterizations

Model predictions with ASPIC

♦ Schwarz

Terrero-Escalante Qassification

Data analysis in model space

Planck constraints on reheating

 \bigcirc

Perspective

 \bigcirc

 \bigcirc

Planck 2013 constraints on slow-roll

From the slow-roll expanded expression of $\mathcal{P}_{\zeta}(k)$ and $\mathcal{P}_{h}(k)$

• Constraints on ϵ_{i*} and P_* (or H^2_*/ϵ_{1*})

Comparison with observations

 Planck 2013 constraints on slow-roll
 Comparison with model

predictions

- ♦ Most generic reheating parametrization
- ♦ Encyclopædia Inflationaris
- Purpose
- ASPI example
- program with $\ensuremath{\mathrm{LFI}}$
- ♦ ASPI©and alternative
- parameterizations
- Model predictions with ASPIC
- *Schwarz
- Terrero-Escalante classification
- Data analysis in model

Ο

0

space Planck constraints on

reheating (

Perspective

Comparison with model predictions

- Can only be done from the input of $R_{
 m reh}$, or $R_{
 m rad}$, or $(\overline{w}_{
 m reh},
 ho_{
 m reh})$
 - One can scan various reheating histories: ΔN_* is not arbitrary!
 - Example: LFI₂ with $\overline{w}_{reh} = 0$ and $\rho_{nuc} < \rho_{reh} < \rho_{end}$

Comparison with observations

- Planck 2013 constraints on slow-roll
- Comparison with model predictions

Most generic reheating parametrization

Encyclopædia
 Inflationaris

Purpose

♦ ASPIC example program with LFI

♦ ASPIC and alternative parameterizations

Model predictions withASPIC

♦ Schwarz

Terrero-Escalante classification

Data analysis in model space

Planck constraints on reheating

Perspective

Most generic reheating parametrization

- In the abscence of any information on the reheating, one should use $R_{\rm reh}$ (or $R_{\rm rad}$)
- Same example: LFI₂ without assuming $\overline{w}_{\rm reh} = 0$

Encyclopædia Inflationaris

With J. Martin and V. Vennin

http://arxiv.org/abs/1303.3787 http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html

Introduction

Comparison with observations

Planck 2013 constraints on slow-roll

✤ CompaΩson with model predictions

Most generic reheating parametrization

Encyclopædia
 Inflationaris

Purpose

♦ ASPIC example program with LFI

ASPIC and alternative parameterizations

Model predictions with ASPIC

Schwarz
 Terrero-Escalante
 classification

Data analysis in model space \bigcirc

Planck constraints on reheating

Perspective

00

Purpose

Introduction

Comparison with observations

Planck 2013 constraints on slow-roll

Comparison with model predictions

Most generic reheating parametrization

Encyclopædia
 Inflationaris

♦ Purpose

 ASPIC example program with LFI
 ASPIC and alternative parameterizations

Model predictions with ASPIC

Schwarz
 Terrero-Escalante
 classification

Data analysis in model space

Planck constraints on reheating

 \mathbf{O}

Perspective

- Quasi-exhaustive analysis to derive reheating consistent observable predictions for all slow-roll single-field inflationary models
- Comes with a public code (ASPIC)
- Currently supports more than 50 motivated classes of potential

Name	Parameters	Sub-models	$V(\phi)$
HI	0	1	$M^4 \left(1 - e^{-\sqrt{2/3}\phi/M_{\rm Pl}}\right)$
RCHI	1	1	$M^4 \left(1 - 2e^{-\sqrt{2/3}\phi/M_{Pl}} + \frac{A_I}{16\pi^2}\frac{\phi}{\sqrt{6}M_{Pl}}\right)$
LFI	1	1	$M^4 \left(\frac{\phi}{M_{\rm Pl}}\right)^p$
MLFI	1	1	$M^4 \frac{\phi^2}{M_{Pl}^2} \left[1 + \alpha \frac{\phi^2}{M_{Pl}^2}\right]$
RCMI	1	1	$M^4 \left(\frac{\phi}{M_{\text{Pl}}}\right)^2 \left[1 - 2\alpha \frac{\phi^2}{M_{\text{Pl}}^2} \ln \left(\frac{\phi}{M_{\text{Pl}}}\right)\right]$
RCQI	1	1	$M^4 \left(\frac{\phi}{M_{\text{Pl}}}\right)^4 \left[1 - \alpha \ln \left(\frac{\phi}{M_{\text{Pl}}}\right)\right]$
NI	1	1	$M^4 \left[1 + \cos\left(\frac{\phi}{f}\right)\right]$
ESI	1	1	$M^4 (1 - e^{-q\phi/M_{Pl}})$
PLI	1	1	$M^4 e^{-\alpha \phi/M_{\rm Pl}}$
KMII	1	2	$M^4 \left(1 - \alpha \frac{\phi}{M_{\rm Pl}} e^{-\phi/M_{\rm Pl}}\right)$
HF1I	1	1	$M^4 \left(1 + A_1 \frac{\phi}{M_{\rm Pl}}\right)^2 \left[1 - \frac{2}{3} \left(\frac{A_1}{1 + A_1 \phi/M_{\rm Pl}}\right)^2\right]$
CWI	1	1	$M^4 \left[1 + \alpha \left(\frac{\phi}{Q}\right)^4 \ln \left(\frac{\phi}{Q}\right)\right]$
LI	1	2	$M^4 \left[1 + \alpha \ln \left(\frac{\phi}{M_{\text{Pl}}} \right) \right]$
RpI	1	3	$M^4 e^{-2\sqrt{2/3}\phi/M_{\rm Pl}} \left e^{\sqrt{2/3}\phi/M_{\rm Pl}} - 1 \right ^{2p/(2p-1)}$
DWI	1	1	$M^4 \left[\left(\frac{\phi}{\phi_0} \right)^2 - 1 \right]^2$
MHI	1	1	$M^4 \left[1 - \operatorname{sech}\left(\frac{\phi}{\mu}\right)\right]$
RGI	1	1	$M^4 \frac{(\phi/M_{\rm Pl})^2}{\alpha + (\phi/M_{\rm Pl})^2}$
MSSMI	1	1	$M^4 \left[\left(\frac{\phi}{\phi_0} \right)^2 - \frac{2}{3} \left(\frac{\phi}{\phi_0} \right)^6 + \frac{1}{5} \left(\frac{\phi}{\phi_0} \right)^{10} \right]$
RIPI	1	1	$M^4 \left[\left(\frac{\phi}{\phi_0} \right)^2 - \frac{4}{3} \left(\frac{\phi}{\phi_0} \right)^3 + \frac{1}{2} \left(\frac{\phi}{\phi_0} \right)^4 \right]$
AI	1	1	$M^4 \left[1 - \frac{2}{\pi} \arctan\left(\frac{\phi}{\mu}\right)\right]$
CNAI	1	1	$M^4 \left[3 - (3 + \alpha^2) \tanh^2 \left(\frac{\alpha}{\sqrt{2}} \frac{\phi}{M_{\text{Pl}}}\right)\right]$
CNBI	1	1	$M^4 \left[(3 - \alpha^2) \tan^2 \left(\frac{\alpha}{\sqrt{2}} \frac{\phi}{M_{Pl}} \right) - 3 \right]$
OSTI	1	1	$-M^4 \left(\frac{\phi}{\phi_0}\right)^2 \ln \left[\left(\frac{\phi}{\phi_0}\right)^2\right]$
WRI	1	1	$M^4 \ln \left(\frac{\phi}{\phi_0}\right)^2$
SFI	2	1	$M^4 \left[1 - \left(\frac{\phi}{\mu}\right)^p\right]$

II	2	1	$M^4 \left(\frac{\phi - \phi_0}{M_{Pl}}\right)^{-\beta} - M^4 \frac{\beta^2}{6} \left(\frac{\phi - \phi_0}{M_{Pl}}\right)^{-\beta-2}$
KMIII	2	1	$M^4 \left[1 - \alpha \frac{\phi}{M_{\text{Pl}}} \exp \left(-\beta \frac{\phi}{M_{\text{Pl}}} \right) \right]$
LMI	2	2	$M^4 \left(\frac{\phi}{M_{\rm Pl}}\right)^{\alpha} \exp\left[-\beta(\phi/M_{\rm Pl})^{\gamma}\right]$
TWI	2	1	$M^4 \left[1 - A \left(\frac{\phi}{\phi_0} \right)^2 e^{-\phi/\phi_0} \right]$
GMSSMI	2	2	$M^{4}\left[\left(\frac{\phi}{\phi_{0}}\right)^{2} - \frac{2}{3}\alpha\left(\frac{\phi}{\phi_{0}}\right)^{6} + \frac{\alpha}{5}\left(\frac{\phi}{\phi_{0}}\right)^{10}\right]$
GRIPI	2	2	$M^4 \left[\left(\frac{\phi}{\phi_0} \right)^2 - \frac{4}{3} \alpha \left(\frac{\phi}{\phi_0} \right)^3 + \frac{\alpha}{2} \left(\frac{\phi}{\phi_0} \right)^4 \right]$
BSUSYBI	2	1	$M^4\left(e^{\sqrt{6}\frac{\phi}{M_{\text{Pl}}}} + e^{\sqrt{6}\gamma\frac{\phi}{M_{\text{Pl}}}}\right)$
TI	2	3	$M^4 \left(1 + \cos\frac{\phi}{\mu} + \alpha \sin^2\frac{\phi}{\mu}\right)$
BEI	2	1	$M^4 \exp_{1-\beta} \left(-\lambda \frac{\phi}{M_{\text{Pl}}}\right)$
PSNI	2	1	$M^4 \left[1 + \alpha \ln \left(\cos \frac{\phi}{f} \right) \right]$
NCKI	2	2	$M^4 \left[1 + \alpha \ln \left(\frac{\phi}{M_{\text{Pl}}}\right) + \beta \left(\frac{\phi}{M_{\text{Pl}}}\right)^2\right]$
CSI	2	1	$\frac{M^4}{\left(1 - \alpha \frac{\phi}{M_{\text{Pl}}}\right)^2}$
OI	2	1	$M^4 \left(\frac{\phi}{\phi_0}\right)^4 \left[\left(\ln \frac{\phi}{\phi_0}\right)^2 - \alpha \right]$
CNCI	2	1	$M^4\left[(3 + \alpha^2) \operatorname{coth}^2\left(\frac{\alpha}{\sqrt{2}}\frac{\phi}{M_{\text{Pl}}}\right) - 3\right]$
SBI	2	2	$M^{4}\left\{1+\left[-\alpha+\beta\ln\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)\right]\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{4}\right\}$
SSBI	2	6	$M^4 \left[1 + \alpha \left(\frac{\phi}{M_{Pl}}\right)^2 + \beta \left(\frac{\phi}{M_{Pl}}\right)^4\right]$
IMI	2	1	$M^4 \left(\frac{\phi}{M_{\rm Pl}}\right)^{-p}$
BI	2	2	$M^4 \left[1 - \left(\frac{\phi}{\mu}\right)^{-p}\right]$
RMI	3	4	$M^{4}\left[1 - \frac{c}{2}\left(-\frac{1}{2} + \ln \frac{\phi}{\phi_{0}}\right)\frac{\phi^{2}}{M_{Pl}^{2}}\right]$
VHI	3	1	$M^4 \left[1 + \left(\frac{\phi}{\mu}\right)^p\right]$
DSI	3	1	$M^4 \left[1 + \left(\frac{\phi}{\mu}\right)^{-p}\right]$
GMLFI	3	1	$M^4 \left(\frac{\phi}{M_{\text{Pl}}}\right)^p \left[1 + \alpha \left(\frac{\phi}{M_{\text{Pl}}}\right)^q\right]$
LPI	3	3	$M^4 \left(\frac{\phi}{\phi_0}\right)^p \left(\ln \frac{\phi}{\phi_0}\right)^q$
CNDI	3	3	$\frac{M^4}{\left\{1+\beta \cos \left[\alpha \left(\frac{\phi - \phi_0}{M_{Pl}}\right)\right]\right\}^2}$

ASPIC example program with LFI

Introduction

Comparison with observations

Planck 2013 constraints on slow-roll Comparison with model predictions * Most generic reheating parametrization Encyclopædia Inflationaris

♦ ASPIC example program with LFI

♦ ASPIC and alternative ∩ parameterizations

Model predictions with ASPTC

Schwarz

Terre Escalante

classification Data analysis in model space

 \bigcirc

 \bigcirc

Planck constraints on

reheating \cap

Perspective

0

print *, 'xend= xstar= DeltaN= ', xend, xstar, DeltaN eps(1) = lfi_epsilon_one(xstar,p) eps(2) = lfi_epsilon_two(xstar,p) eps(3) = lfi_epsilon_three(xstar,p)

n=2

lnR = 0. kp

ns = scalar_spectral_index(eps) r = tensor_to_scalar_ratio(eps)

print *, 'ns=r=',ns,r

read(*,*)

program toy

use infprec, only : kp

real(kp), dimension(3) :: eps

real(kp) :: ErehGeV, wreh,lnRhoReh

xstar = lfi_x_rreh(p,lnR,DeltaN)

real(kp) :: p, xstar, xend real(kp) :: ns, r

radiation-like reheating

xend = lfi x endinf(p)

implicit none real(kp) :: lnR

real(kp) :: DeltaN

use |fisr, only : lfi_epsilon_one, lfi_epsilon_two use Ifisr, only : Ifi epsilon three, Ifi x endinf

use sflow, only : scalar_spectral_index, tensor_to_scalar_ratio
use cosmopar, only : lnMpinGeV, PowerAmpScalar

use lfireheat, only : lfi_x_rreh, lfi_x_star

matter like reheating at Ereh=10^8 GeV ErehGeV = 1e8wreh = 0

lnRhoReh = 4._kp*(log(ErehGev)-lnMpinGev)

xstar = lfi_x_star(p,wreh,lnRhoReh,PowerAmpScalar,DeltaN)

print *, 'xend= xstar= DeltaN= ', xend, xstar, DeltaN

eps(1) = lfi_epsilon_one(xstar,p) eps(2) = lfi_epsilon_two(xstar,p) eps(3) = lfi_epsilon_three(xstar,p)

ns = scalar_spectral_index(eps) r = tensor_to_scalar_ratio(eps)

print *. 'ns=r='.ns.r

end program toy

Planck 2013 constraints

Comparison with model

Most generic reheating

 \bigcirc

Introduction

observations

on slow-roll

predictions

Purpose

ASPIC Schwarz

space

reheating

Perspective

♦ ASPIC example

Terrero-Escalante classification

Model predictions with

Data analysis in model

Planck constraints on

 \bigcirc

Comparison with

ASPIC and alternative parameterizations

Postulating an evolution for $w(N) = \frac{P(N)}{\rho(N)} = \frac{2}{3}\epsilon_1(N) - 1 \Leftrightarrow$

$$\frac{d\phi}{dN} = \pm\sqrt{3} (1+w)^{1/2} \\ \frac{d\ln V}{dN} = -3 (1+w) + \frac{d\ln(1-w)}{dN} \Rightarrow \begin{cases} \phi = \phi_{\text{end}} \mp \sqrt{3} \int (1+w)^{1/2} dN \\ V \propto (1-w) e^{-3 \int (1+w) dN} \end{cases}$$

- Strictly equivalent to specify $V(\phi)$ up to the normalisation M^4 M^4 , ΔN_* are obtained from $P_* + R_{\rm reh} + {\rm solving} w(N_{\rm end}) = 1/3$
- Expanding $n_{\rm s}(N)$ and r(N) around $N_* \Leftrightarrow {\sf choosing} \ V(\phi)$ around ϕ_*

$$n_{\rm S} = 1 - 2\epsilon_1 - \epsilon_2 + \mathcal{O}(\epsilon^2)$$

$$r = 16\epsilon_1 + \mathcal{O}(\epsilon^2) \Rightarrow \begin{cases} \frac{\mathrm{d}\phi}{\mathrm{d}N} \simeq \pm \frac{r^{1/2}}{\sqrt{8}} \\ \frac{\mathrm{d}\ln V}{\mathrm{d}N} \simeq -\frac{r}{8} \left(1 + \frac{1 - n_{\rm S} - r/8}{6 - r/8}\right) \end{cases}$$

• But M^4 , ΔN_* have to be postulated, reheating consistency lost

A given parameterization = 1 model in ASPIC

Comparison with observations

- Planck 2013 constraints
 on-slow-roll
- Comparison with model predictions
- * Most generic reheating parametrization
- Encyclopædia
 Inflationaris
- Purpose
- ♦ ASPIC example
- program with ${\rm LFI}$
- * ASPIC and alternative parameterizations

Model predictions with ASPIC

Schwarz
 Terrero-Escalante
 classification

```
Data analysis in model space
```


Model predictions with ASPIC

For all Encyclopædia Inflationaris models

potential parameters + reheating $\longrightarrow \epsilon_{i*} \longrightarrow n_{s}$, r, α_{s} ... (with consistency relations)

• Easy to check for which reheating history a model is compatible

observations

predictions

Inflationaris

Purpose

ASPIC

space

reheating

Schwarz

classification

Terrero-Escalante

Comparison with

on slow-roll

parametrization

Encyclopædia

♦ ASPIC example program with LF1

♦ ASPIC and alternative parameterizations

Model predictions with

Data analysis in model

Planck constraints on

Perspective o °

Planck 2013 constraints

Comparison with model

✤ Most generic rebeating

Schwarz Terrero-Escalante classification

Based on the relative energy evolution at the pivot scale (ϕ_*)

In terms of slow-roll parameters

ST1: $\epsilon_{2*} > 2\epsilon_{1*}$, ST2: $0 < \epsilon_{2*} < 2\epsilon_{1*}$, ST3: $\epsilon_{2*} < 0$

Comparison with observations

Data analysis in model space

* Using the slow-roll approximation as a proxy

Bayesian modelcomparison

✤ Jeffreys' scale ^O

Speeding up evidence calculation

Accuracy of ASPIC + effective likelihood

✤ Bayes factor for mundred
 ⁰of models

And the winners are...
Narrowing down the simplest with complexity

Planck constraints on reheating

0

00

 \bigcirc

Perspective

•

Data analysis in model space

Comparison with observations

Data analysis in model space

✤ Using the slow-roll approximation as a proxy

Bayesian model comparison

✤ Jeffreys' scale

Specting up evidence calculation

Accuracy of ASPIC +
 effective likelihood
 Bayes factor for hundred

of models

And the winners are...
Narrowing down the simplest with complexity

Planck constraints on reheating

Perspective

Using the slow-roll approximation as a proxy

To constrain the fundamental inflationary parameters: $oldsymbol{ heta}_{ ext{inf}}$

$$(\boldsymbol{\theta}_{\mathrm{inf}}, R_{\mathrm{reh}}) \longrightarrow \mathsf{ASPIC} \longrightarrow \boldsymbol{\epsilon_{i*}} \longrightarrow \begin{cases} \mathcal{P}_{\zeta}(k) \\ \mathcal{P}_{h}(k) \end{cases} \longrightarrow \mathsf{CAMB} \longleftrightarrow \mathrm{CMB} \mathrm{data} \end{cases}$$

Example: Planck 2013 data analysis with LFI

• Confidence intervals are on the relevant parameters (95% CL)

$$p < 2.3, \qquad -37 < \ln R_{\rm reh} < 6$$

Comparison with observations

Data analysis in model space

- Substant Using the slow-roll approximation as a proxy
- Bayesian model comparison
- ✤ Jeffreys' scale
- Speeding up evidence calculation

 \bigcirc

- ♦ Accuracy of ASPIC + effective likelihood ○
- ♦ Bayes factor for hundred
- of models
- And the winners are...Narrowing down the
- simplest with complexity Oplanck constraints on

 \mathbf{CO}

 \bigcirc

 \bigcirc

0

reheating

Perspective

 $\overline{\mathbf{\Omega}}$

Bayesian model comparison

- Bayesian evidence
 - + For each model \mathcal{M} , marginalisation over all parameters

$$\mathcal{E}(D|\mathcal{M}) = \int \mathrm{d}\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \pi(\boldsymbol{\theta}|\mathcal{M})$$

 \blacklozenge Gives the posterior probability of ${\mathcal M}$ to explain the data D

$$p(\mathcal{M}|D) = \frac{\mathcal{E}(D|\mathcal{M})\pi(\mathcal{M})}{p(D)} \qquad \text{where} \qquad p(D) = \sum_{i} \mathcal{E}(\mathcal{M}_{i}|D)\pi(\mathcal{M}_{i})$$

Bayes' factor

 \blacklozenge Gives the posterior odds between $\mathcal M$ and a reference model $\mathcal M_0$

$$\frac{p(\mathcal{M}|D)}{p(\mathcal{M}_0|D)} = \mathbf{B} \frac{\pi(\mathcal{M})}{\pi(\mathcal{M}_0)} \Rightarrow \mathbf{B} = \frac{\mathcal{E}(D|\mathcal{M})}{\mathcal{E}(D|\mathcal{M}_0)}$$

Measure of how much the prior information has been updated

Jeffreys' scale

Strength of evidence of ${\mathcal M}$ compared to ${\mathcal M}_0$

 ASPIC allows to fastly do that for all the *Encyclopædia Inflationaris* models

Introduction

Comparison with observations

- Osing the slow-roll approximation as a proxy
 Bayesian model ()
- comparison

✤ Jeffreys' scale

- Speeding up evidence calculation
- ♦ Accuracy of ASPIC + effective likelihood
- Bayes facto for hundred of models
- And the winners are...
- ♦ Narrowing down the
- simplest with complexity
- Planck constraints on
- reheating

 \bigcirc

 \bigcirc

Perspective

 \bigcirc

Comparison with observations

Data analysis in model space

- Using the slow-roll approximation as a proxy
 Bayesian model

Speeding up evidence

- calculation
 Accuracy of ASPIC +
 effective likelihood
- Bayes factor for hundred of models
- And the winners are...
 Narrowing down the simplest with complexity

Planck constraints on reheating

 \cap

Perspective

 \bigcirc

Speeding up evidence calculation

- Marginalisation over all parameters is numerically challenging!
- Effective likelihood for slow-roll inflation
 - Requires only one complete data analysis to get

$$\mathcal{L}_{\text{eff}}(D|P_*, \epsilon_{i*}) = \int p(D|\boldsymbol{\theta}_{\text{cosmo}}, P_*, \epsilon_{i*}) \pi(\boldsymbol{\theta}_{\text{cosmo}}) d\boldsymbol{\theta}_{\text{cosmo}}$$

- Use machine-learning algorithm to fit its multidimensional shape
- + For each model \mathcal{M} and their parameters $\boldsymbol{\theta}_{\mathrm{inf}}, R_{\mathrm{reh}}$

 $p(\boldsymbol{\theta}_{\inf}, R_{\operatorname{reh}} | D, \mathcal{M}) = \frac{\mathcal{L}_{\operatorname{eff}}[D | P_*(\boldsymbol{\theta}_{\inf}, R_{\operatorname{reh}}), \epsilon_{i*}(\boldsymbol{\theta}_{\inf}, R_{\operatorname{reh}})] \pi(\boldsymbol{\theta}_{\inf}, R_{\operatorname{reh}} | \mathcal{M})}{p(D | \mathcal{M})}$

- All posteriors and evidences can be obtained by integrating $\mathcal{L}_{\mathrm{eff}}$
- In practice: ASPIC + MultiNest + $\mathcal{L}_{
 m eff}$ = 1 hour per model

Comparison with observations

Data analysis in model space

 \bigcirc

Using the slow-roll approximation as a proxy

- Bayesian model comparison
- ✤ Jeffreys' scale
- Speeding up evidence calculation

♦ Accuracy of ASPIC + effective likelihood

- Bayes factor for hundred of models
- And the winners are...
 Narrowing down the simplest with complexity
- Planck constraints on reheating

0

Perspective

Accuracy of ASPIC + effective likelihood

First order quantities marginalized over second order

Bayes factor for hundred of models

Introduction

Comparison with observations

Data analysis in model	BI _{nb}
	BI _{ls}
space	BI_{2s}
	$\mathrm{BI}_{3\mathrm{s}}$
Using the slow-roll	$\mathrm{BI}_{4\mathrm{s}}$
approximation as a proxy	BI_{58}
	BI_{6i}
Bavesian model	BI
•	, Di _{stg}
comparison	ĊWI _f
A laffana a' anala	DWI
* Jettreys scare	ESI
Speeding up ovidence	ESI
* Speeding up evidence	ESI
calculation	$ESI_{\sqrt{2}}$
	$\mathrm{ESI}_{\sqrt{2/3}}$
* Accuracy of ASPIC +	GMSSMI _{ep}
effective likeliho	GMSSMI _{opA}
	GRIPI
Bayes factor for hundred	GRIPI
of models	GRIPI _{onA}
	$GRIPI_{opB}$
And the winners are	н
	KKLTI
Narrowing down the	KKLTI _s
simplest with complexity	KKLTI _{stg}
simplest with complexity	KMII KAUI
	KMII.
Planck constraints on	LI LI
reheating	LI _{a>0}
Teneating	MHI
	MHI
Perspective Q	MHI _s
	MSSMI _o
	MSSMI _p
	NCKI _{β<0}
	BCHI BCHI
	RCHI
	RGI
	$RGI_{1/16}$
	RGI
	RGIs
	RIPI _{sugra}
	RIPIo

-5

-2.5 -1.1 1.1 2.5

Bayesian Evidences $\ln(\mathcal{E}/\mathcal{E}_{HI})$

	RMI_1			GMLFI _{1,3}			TI^e	
	RMI_{11}			GMLFI _{2,1}			$TI^{6}_{q < 1/2}$	
	RMI_2			MLFI	1 1		$TI_{q > 1/2}^{6}$: :
	RMI_{21}	1	: · · · · · · · · · · · · · · · · · · ·	GMLFI _{2,3}	1		TWI_{ϕ_0}	1 1
	SBI		GM	$LFL_{2/3,1/3}$	1		$TWI_{\phi_0}^r$	1 1
	$SBI_{\alpha_{min}}$: : :	ĢM	$LFL_{2/3,4/3}$: :	:	: TWI	1 1
	SFI	1	: : : : : : : : : : : : : : : : : : : :	GMLFI _{3,1}	1		TWI ^r	1 1
	SFI_1	1	: : : : : : : : : : : : : : : : : : :	GMLFI _{3,2}	1	:	Π_{β}	1 1
	SFI ₂		: : : : : : : : : : : : : : : : : : :	GMLFI _{3,3}	: : : · · ·		$:$ $:$ Π_f	1 1
	SFI ₂₁		1	LFI	1		Π_{λ}	1 1
	SFI ₃		1 I I I I I I I I I I I I I I I I I I I	LFI_1			PLI	1 1
	SFI ₃₁			LFI_2	1		PLI _p	1 1
	SFI_{3s}			$LFI_{2/3}$	1		$BSUSYBI_{f}$	
	SFI_4		: : :	LFI_3			BSUSYBI	
	SFI_{41}		: : : :	LFI_4	1		CNCI	
	SFI_{48}			LPI1			CNDI	
	SFI_1			$LPI1_{4,1}$			CSI	
	SFI_s			$LPI1_{4,2}$			DSI	
	SSB12			$LPI1_{4,3}$			DSI_2	
	$SSB12_f$			$NCKI_{\beta>0}$			DSI_0	
	SSB13			NI			IMI	
	$SSBI3_{f}$	1.1.1		IO :	1		Į MI1	: :
	S\$BI4			PSNI _{epA}			ĮMI2	
	SSBI4 _f	1	: :	$PSNI_{epB}$	1 1		1MI3	1 1
	SSB15		1 1	$PSNI_{epC}$	1		1MI4	1 1
	SSB15 _f	1	1 1	PSNI _{ft1}	1		İMI5	1 1
	WRI _g		1	PSNI _{ft2}	1		İ İMI6	1 1
	WRI ₀	1	1	PSNI _{ft3}	1		ŔMI ₃	1 1
	BEI		1	PSNI _{ft4}	1		RMI31	
	CNAI	: : :	: : : :	PSNI	: :	:	ŔMI4	1 1
	HF1I		1	PSNI _{oB}	1		RMI_{41}	
	$LI_{\alpha < 0}$	1	1	PSNLC	: : · ·		VHI	
	LMI1 _o		1	RCMI	1		VHI1	1 1
	LMI1 _p			RCQI	1.1.1		$VHI_{1/2}$	
	LMI2 _o		: : :	SSB11	: : :		VHI ₂	1 1
	LMI2 _p		: : : :	SSBI1			VHI ₃	
	LPI2 ₂			SSB16			VHI_4	
	LPI2 ₄			SSBI6 _f			$VHI_{n \leq 1}$	
	LPI2 ₆			$TI_{1/2}$			CNBI	
	LPI3 ₂			$TI_{\alpha>1/2}^{ft+}$			GMSSMI	
	LPI3 ₄			$TI_{\alpha>1/2}^{ft}$			GMSSMI	
	L'PI3 ₆	1	1 1	$TI_{\alpha > 1/2}^{ft-}$	1		ĢMSSMI _{omA}	1 1
	RPI1			$TI_{\alpha < 1/2}^{ft +}$: :		GMSSMI _{omB}	
	RPI2			$TI_{\sigma < 1/2}^{ft}$	1		GRIPL	
	RPI3		1	$TI_{d\leq 1/2}^{ft-}$	1		GRIPI	
	GMLFI	1		$\dot{T}I_{ft+}$	1		GRIPI	
	GMLFI _{1.1}	1	1	TI_{ft}	1		GRIPI	
	GMLFI _{1.2}		1	TI_{t-}	1	:	GRIPI	
_	5 -25 -11	11 25	-5 -25		1 2 5	_	25 .1 1	11 25
	J -Z.J -L.L	1.1 L.J	-5 -2.5	1			/ <u>-</u> Z.J -I.I	I.I Z.J

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Bayes factor for hundred of models

WMAP7, arXiv:1009.4157

RGI.

RIPI

-5

RIPL

-2.5 -1.1 1.1 2.5

Introduction

0

Data analysis in model	AI	1 :
	$\mathrm{BI}_{\mathrm{ph}}$	1
space	Bl _{ls}	
	Bl _{2s}	
Using the slow-roll		
approximation as a proxy	BI ₅₅	
	BI_{0s}	
Bayesian model	BI_{s}	1 :
comparison o	$\mathrm{BI}_{\mathrm{stg}}$	
✤ Jeffreys' scate	DWI	
	ESI	
Speeding up evidence	ESI	1
calculation	ESI.	
	ESI/2 ESI	
♦ Accuracy of ASPIC +	GMSSMI _{en}	
effective likelihood	GMSSMI _{opA}	
	$GMSSMI_{opB}$	
Bayes factor for hundred	GRIPI _{sugra}	:
of models	$\mathrm{GRIPI}_{\mathrm{ep}}$	
or models	GRIPI _{opA}	
And the winners are	GrifiopB	
	KKLTI	
Narrowing down the	KKLTI,	
simplest with complexity	KKLTI _{stg}	1
Simplest with complexity	КМП	
	KMIII	1
Planck constraints on	KMH _{V>0}	
reheating	Ш	
	MHI	1
	MHI ₁	
Perspective	MHI _s	1
	MSSMI _o	
	MSSMIp	
	NCKIβ<0 ØCTI	
	RCHI BCHI	
	RCHI	
	RGI	
	RGI _{1/16}	:
	RGI,	1 0

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

0

Bayes factor for hundred of models

Planck 2013, arXiv:1303.5082

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Bayes factor for hundred of models

Planck 2013, arXiv:1312.3529

Introduction

Comparison with observations

- approximation as a proxy Bayesian model comparison \cap ✤ Jeffreys' scate Speeding up evidence calculation ♦ Accuracy of ASPIC + effective likeliho Bayes factor for hundred
- of models
- ♦ And the winners are. . . ✤ Narrowing down the simplest with complexity
- Planck constraints on reheating

Perspective

 \bigcirc

Schwarz-Terrero-Escalante Classification: 2

Bayesian Evidences $\ln(\mathcal{E}/\mathcal{E}_{HI})$

GMLFL

GMLEL

GMLFL.

GMLEL

LPII

LPI1

PSNL.

CMLE

MLEI

GMLFL_{2/2}

PSNL.'.

PSNL.

PSNI_{e2}

PSNL A

PSNI_{oC}

-2.5 -1.1

-5

PSNI₆₃

PSNL

P\$NI_{ep}

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Bayes factor for hundred of models

LPI2.

GMLFI

Planck 2013, arXiv:1312.3529

Introduction

 \bigcirc

Comparison with observations

Bayesian Evidences $\ln({\cal E}/{\cal E}_{\rm HI})$ and $\ln({\cal L}_{\rm max}/{\cal E}_{\rm HI})$

GMLEL

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Displayed Evidences: 194

Comparison with Oobservations

Data analysis in model space

- Using the slow-roll approximation as a proxy
 Bayesian model
- comparison ♦ Jeffreys' scale
- Speeding up evidence calculation
- Accuracy of ASPIC +
 effective likelihood
 Bayes factor for hundred
- of models

\clubsuit And the winners are. . .

Narrowing down the simplest with complexity

Planck constraints on reheating

 \bigcirc

```
Perspective
```

6

0

And the winners are...

- From non-commital priors: $\pi(\mathcal{M}) = 1/N_{\text{model}}$
- Posterior-to-prior ratio: Planck 2013

• Some numbers

- ◆ 52 models are in the inconclusive region "Some Good": AI, BI, ESI, HI, KKLTI, KMII, KMIII, LI, MHI, PSNI, RGI, SBI, SFI, SSBI2, TWI
- ♦ 66 models are strongly disfavoured (some "Bad" others "Ugly")

Comparison with observations

Data analysis in model space

Using the slow-roll approximation as a proxy
Bayes model
Comparison

✤ Jeffreys' scale

Speeding up evidence calculation

 Ccuracy of ASPIC + effective likelihood
 Bayes factor for hundred of models

 And the winners are...
 Narrowing down the simplest with complexity

Planck constraints on reheating

 \bigcirc

 \bigcirc

Perspective

 \bigcirc

Narrowing down the simplest with complexity

Bayesian complexity \simeq the number of constrained parameters

 $C = \langle -2 \ln \mathcal{L} \rangle + 2 \ln \mathcal{L}_{\max} \quad \Rightarrow \quad N_{\text{unconstrained}} = N_{\text{param}} - C$

• Planck 2013

arXiv:1312.3529 For the most probable and simplest scenarios \longrightarrow Displayed Models: 66/193

Comparison with observations Data analysis in model space

Planck constraints on reheating

 Posteriors on the reheating parameter

 Prior-to-posterior width ratio
 Reheating constraints versus evidence

Planck constraints on reheating

Comparison with observations Data analysis in model space

Planck constraints on reheating

Posteriors on the reheating parameter

 Prior-to-posterior width ratio
 Reheating constraints versus evidence

 \bigcirc

Perspective

0

Ο

 \bigcirc

Posteriors on the reheating parameter

- For each model, we use the most generic parameterization: $R_{
 m reh}$
 - Prior choice: Jeffreys' on $R_{\rm reh} \Leftrightarrow$ flat on $\ln R_{\rm reh}$ with:

$$-46 < \ln \frac{R_{\rm reh}}{R_{\rm reh}} < 15 + \frac{1}{3} \ln \rho_{\rm end}$$

Planck 2013 data put non-trivial constraints on many models

Examples: LI with
$$V(\phi) = M^4 (1 + \alpha \ln \phi)$$

prior

posterior

Comparison with observations Data analysis in model space

Planck constraints on reheating

Posteriors on the reheating parameter

 Prior-to-posterior width ratio
 Reheating constraints versus evidence

 \bigcirc

Perspective

0

Ο

0

Posteriors on the reheating parameter

- For each model, we use the most generic parameterization: $R_{
 m reh}$
 - Prior choice: Jeffreys' on $R_{\rm reh} \Leftrightarrow$ flat on $\ln R_{\rm reh}$ with:

$$-46 < \ln \frac{R_{\rm reh}}{R_{\rm reh}} < 15 + \frac{1}{3} \ln \rho_{\rm end}$$

- Planck 2013 data put non-trivial constraints on many models
- Examples: SBI with $V(\phi) = M^4 \left[1 + \phi^4 \left(-\alpha + \beta \ln \phi \right) \right]$

prior

posterior

Comparison with observations

Data analysis in model

Planck constraints on reheating

 Posteriors on the reheating parameter

Prior-to-posterior width ratio

 \bigcirc

 \bigcirc

Reheating constraints versus evidence

Perspective

C

 \bigcirc

Prior-to-posterior width ratio

Reheating is constrained \Leftrightarrow posterior of $\ln R_{\rm reh}$ is peaked

- The most probable value of $R_{\rm reh}$ is model-dependent
- We introduce the ratio between the prior and posterior standard deviation of $\ln R_{\rm reh}$

$$\frac{\Delta \pi_{\ln R_{\rm reh}}}{\Delta \mathcal{P}_{\ln R_{\rm reh}}}\Big|_{\mathcal{M}} = \sqrt{\frac{\int \left(\ln R_{\rm reh} - \langle \ln R_{\rm reh} \rangle_{\pi}\right)^2 \pi \left(\ln R_{\rm reh} | \mathcal{M} \right) \mathrm{d} \ln R_{\rm reh}}{\int \left(\ln R_{\rm reh} - \langle \ln R_{\rm reh} \rangle_p\right)^2 p \left(\ln R_{\rm reh} | D, \mathcal{M} \right) \mathrm{d} \ln R_{\rm reh}}}$$

- Disfavoured models exhibit larger values for $\Delta \pi_{\ln R_{\rm reh}} / \Delta \mathcal{P}_{\ln R_{\rm reh}}$
 - In the space of models, a fair estimate of the Planck's constraining power on reheating is

$$\left\langle \frac{\Delta \pi_{\ln R_{\rm reh}}}{\Delta \mathcal{P}_{\ln R_{\rm reh}}} \right\rangle \equiv \sum_{\mathcal{M}_i} p(\mathcal{M}_i | D) \left. \frac{\Delta \pi_{\ln R_{\rm reh}}}{\Delta \mathcal{P}_{\ln R_{\rm reh}}} \right|_{\mathcal{M}_i}$$

• For Planck 2013: $\left\langle \frac{\Delta \pi_{\ln R_{\rm reh}}}{\Delta \mathcal{P}_{\ln R_{\rm reh}}} \right\rangle \simeq 1.66 \implies$ prior cut by 40%

Reheating constraints versus evidence

No assumption on reheating (= using $R_{
m reh}$)

Displayed Models: 170/193

Introduction

Comparison with observations

Data analysis in model space

Planck constraints on reheating

Posteriors on the reheating parameter

Prior-to-poster width ratio

Reheating constraints versus evidence

Perspective

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

Reheating constraints versus evidence

Assuming the equation of state $\overline{w}_{\rm reh}$ to be fixed

Introduction

Comparison with observations

Planck constraints on reheating

Posteriors on the reheating parameter

* Prior-to-posterior width

 \bigcirc

0

Reheating constraints versus evidence

Persp**ect**ive

•

 \bigcirc

 \bigcirc

Introduction

Comparison with observations

Data analysis in model space

Planck constraints on reheating

()

 \bigcirc

Perspective

0

 \bigcirc

Novel and efficient approach applicable to any cosmological data set

- Reheating is included and already constrained by Planck 2013
- Provides new insights in the most difficult to disambiguate situation: slow-roll inflation

Introduction

Comparison with observations

Data analysis in model space

Planck constraints on reheating

()

 \bigcirc

Perspective

0

 \bigcirc

Novel and efficient approach applicable to any cosmological data set

- Reheating is included and already constrained by Planck 2013
- Provides new insights in the most difficult to disambiguate situation: slow-roll inflation
- After Planck 2014?

Introduction

Comparison with observations

Data analysis in model space

Planck constraints on reheating

()

 \bigcirc

Perspective

Ο

 \bigcirc

- Novel and efficient approach applicable to any cosmological data set
 - Reheating is included and already constrained by Planck 2013
 - Provides new insights in the most difficult to disambiguate situation: slow-roll inflation
- After Planck 2014?
 - ♦ Future CMB missions: See V. Vennin's talk

Introduction

Comparison with observations

Data analysis in model space

Planck constraints on reheating

 \bigcirc

 \bigcirc

Perspective

Ο

 \bigcirc

Novel and efficient approach applicable to any cosmological data set

- Reheating is included and already constrained by Planck 2013
- Provides new insights in the most difficult to disambiguate situation: slow-roll inflation
- After Planck 2014?
 - Future CMB missions: See V. Vennin's talk
 - ♦ Galaxy surveys: Euclid

From Basse et al., arXiv:1409.3469

