Probing Fundamental Physics with CMB B-modes

Cora Dvorkin Harvard University (Hubble and ITC Fellow)

The Primordial Universe After Planck 30th IAP Colloquium December, 2014

Cosmic History

- The universe began as a hot and dense plasma of particles in thermal equilibrium.
- ➤ Recombination (z \approx 1100): $p^+ + e^- \rightarrow H$ Universe becomes transparent to CMB photons.

Photons mainly freestream.

➤ Radiation from first stars and quasars reionizes the universe (z ≈10-20) and ~10% of the photons re-scatter.

 \blacktriangleright We observe these photons at T \approx 2.725 K.

ACDM: the "Standard" Model of Cosmology

Homogeneous background

Perturbations

 $\Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \tau, heta$

- Baryonic matter: 5%
- Cold dark matter: 27%
- Dark energy: 68%

- A_s, n_s
- Nearly scale-invariant
- Gaussian

ACDM: the "Standard" Model of Cosmology

Homogeneous background

$\Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \tau, \theta$

- Baryonic matter: 5%
- Cold dark matter: 27%
- Dark energy: 68%

Λ? CDM?

- A_s, n_s
- Nearly scale-invariant
- Gaussian

Origin?

After March 2014 (BICEP2): Do we need new parameters in our Standard Model?

Homogeneous background

Perturbations

 $\Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \tau, \theta$

- Baryonic matter: 5%
- Cold dark matter: 27%
- Dark energy: 68%

$$1_{S}, 1_{S}, 1_{S}, 1_{t}$$

 \boldsymbol{n}

Nearly scale-invariant

Δ

Gaussian

From Temperature Anisotropies to Polarization

W. Hu & M.White

Polarization is generated by Thomson scattering:

$$e^-\gamma \to e^-\gamma$$

Local temperature quadrupole

Linear polarization

6

CMB polarization: E-B decomposition

Represent CMB polarization on the sky by a traceless symmetric tensor Π_{ab}

E-mode: "curl-free" field

$$\Pi_{ab} = \left(\nabla_a \nabla_b - \frac{1}{2} g_{ab} \nabla^2\right) \phi$$

B-mode: "divergence-free" field

$$\Pi_{ab} = \left(\frac{1}{2}\epsilon_{ac}\nabla^c\nabla_b + \frac{1}{2}\epsilon_{bc}\nabla^c\nabla_a\right)\phi$$

This is the analog of the gradient/curl decomposition of a vector field

Generation of B-modes

Polarization is a spin-2 field: $(Q \pm iU)(\hat{\mathbf{n}}) \rightarrow e^{\mp i2\Psi} (Q \pm iU)(\hat{\mathbf{n}})$

$$(Q \pm iU)(\hat{\mathbf{n}}) = -\sum_{\ell m} \left(E_{\ell m} \pm iB_{\ell m} \right)_{\pm 2} Y_{\ell m}(\hat{\mathbf{n}})$$

- Gravitational waves (distorting space-time and creating a CMB quadrupole) or non-linear evolution —> B-modes.

How do primordial tensor modes affect the CMB temperature and polarization spectra?

9

Limits on tensor modes from the temperature data

Tight constraint on the *tensor-to-scalar ratio* (r) from Planck temperature data: r < 0.11 (at the 95% CL).

K. M. Smith, C. Dvorkin, L. Boyle, N. Turok, M. Halpern, G. Hinshaw, B. Gold, PRL (2014)

Polarization Predictions

TE and EE are not yet very informative, but they will be soon (with Planck)

K.M. Smith, C. Dvorkin, L. Boyle, N. Turok, M. Halpern, G. Hinshaw, B. Gold, PRL (2014)

Connecting Theory with Observations

Connecting Theory with Observations

Connecting Theory with Observations

Primordial B-modes and Initial Curvature Power Spectrum reconstruction

V. Miranda, W. Hu, and C. Dvorkin, PRD submitted (2014)

Polarization Predictions

V. Miranda, W. Hu, and C. Dvorkin, PRD submitted (2014)

Testing the single-field slow-roll consistency relation

On CMB scales, the tensor power spectrum is predicted to be almost a power-law in most models of inflation:

$$\left(k^3/2\pi^2\right)P_T(k) = r\Delta_\zeta^2 \left(k/k_0\right)^{n_t}$$

Testing the single-field slow-roll consistency relation

"Delensing" is an algorithm that can separate the gravitational lensing B-modes (non-Gaussian) from the tensor B-modes (Gaussian), lowering the effective lensing. U. Seljak and C. Hirata (2003)

M. Kesden, A. Cooray and M. Kamionkowski (2003)

L. Boyle, K. M. Smith, **C. Dvorkin**, N. Turok, submitted to PRL (2014)

Testing the single-field slow-roll consistency relation

We might be able to distinguish the consistency relation from scale invariance with a futuristic experiment such as the proposed "CMB Stage IV".

19

L. Boyle, K. M. Smith, C. Dvorkin, N. Turok, submitted to PRL (2014)

How do we know if a B-mode measurement is primordial?

• Foregrounds/CMB can be separated by making observations at different frequencies.

How do we know if a B-mode measurement is primordial?

 Foregrounds/CMB can be separated by making observations at different frequencies.

Is there a primordial signal in the BICEP2 measurement?

 The cross-correlation of BICEP2 and KECK maps with Planck maps at different frequencies will help to shed light on this question.

Conclusions and Future Directions

- Using Cosmic Microwave Background observations, we learned that our Universe can be described by a simple model (``LCDM").
- A primordial B-mode signal encodes a wealth of information about the physics of the very early universe:
- The amplitude of the signal is directly related to the energy scale of inflation.
- The shape of the signal could test the basic assumptions of single-field and slow-roll inflation (this would require "delensing" algorithms and an experiment such as the proposed "CMB Stage IV").
- A primordial B-mode signal would make the observed suppression in the initial curvature power spectrum even more pronounced. Predictions for the E-mode polarization could shed light on the origin of this suppression.
- A very difficult B-mode detection has been recently made. An important question remains: Is there a primordial signal buried under this measurement? (analysis to appear soon).