Luminosity Distribution of Gamma-Ray Burst Host Galaxies at redshift = 1 in Cosmological Simulation

Yuu Niino (Kyoto Univ.) in collaboration with J.-H. Choi, M. A. R. Kobayashi K. Nagamine, T. Totani & B. Zhang Background

Metallicity of Long GRB Progenitors

- GRBs maybe prefer lowmetallicity environment.
 - Studies using stellar evolution model suggest Z ≤ 0.1Z_☉.
 - Yoon & Langer (2005);
 Woosley & Heger (2006);
 Yoon+ (2006)
- Some observations of GRB host galaxies support low-metallicity of long GRB environments
 - e.g. Modjaz+ (2008); Fruchter
 + (2006); Jakobsson+ (2005)

Comparison of GRB/SN Hosts

 GRB host galaxies (z ~ 1) are fainter and smaller than core-collapse supernova (SN) host galaxies at similar redshift (Fruchter+ 2006).

likely low-metallicity environment

qualitatively in agreement, but...

- Wolf & Podsiadlowski 2007
 - Empirical relation of galaxy properties (e.g. L-Z relation) of z~1 galaxies are assumed.
 - GRB can occur ~ Z_☉ environment.
 - high-Z than the suggestion of stellar evolution models
- The empirical relations of z~1 galaxies are not well explored.

Our Work

Simulating Galaxies at z = 1

Cosmological Simulation

- Smoothed Particle Hydrodynamic (SPH)
 Code: GADGET-3 (updated version of Springel 2005)
- box size: 34 Mpc, 100 Mpc
 - 400³ particles for gas & dark matter
 - 10⁷⁻⁹M⊙ per a particle
 - Star formation and chemical evolution are computed self consistently during the simulation.
- At z=1.0, each simulation box contains
 > 10⁴ galaxies.

an illustration of cosmological SPH simulation, taken from the website of GADGET-2

Galaxy Properties

 We use GALAXEV (Bruzual & Charlot 2003) to get luminosities of galaxies.

A_V ∝ gas metal column density

galaxies treated as one zone

good in B-band LF and M-Z relation

 overestimation of UV luminosity of brightest galaxies.

GRBs in Simulated Galaxies

GRB rate in simulated galaxies

- Each simulated galaxy contains ~ 30 1000 gas particles.
 - **R**GRB $\propto \Sigma_{Z < Z_{crit}} SFR_{particle}$
- GRB rate to SFR ratio varies in different galaxy.
 - mainly dependent on metallicity

gas particle

GRB rate in simulated galaxies

- Each simulated galaxy contains ~ 30 1000 gas particles.
 - **R**GRB $\propto \Sigma_{Z < Z_{crit}} SFR_{particle}$
- GRB rate to SFR ratio varies in different galaxy.
 - mainly dependent on metallicity

Zgalaxy > Zcrit) gas particle Z < Zcrit gas

GRB rate in simulated galaxies

- Each simulated galaxy contains ~ 30 1000 gas particles.
 - **R**GRB $\propto \Sigma_{Z < Z_{crit}} SFR_{particle}$
- GRB rate to SFR ratio varies in different galaxy.
 - mainly dependent on metallicity

Zgalaxy < Zcrit gas particle Z < Zcrit gas

Luminosity of the Host Galaxies

- We weight the sample of simulated galaxies with RGRB.
 - Host galaxies get fainter with smaller Z_{crit}.
- Kolmogorov-Smirnov test
 - Zcrit > 0.1Z: SN host
 - $Z_{crit} \leq 0.1Z_{\odot}$: GRB host

supports studies with stellar evolution models

A Caveat on Resolution Limit

- The host luminosity distribution is insensitive to Z_{crit}, when Z_{crit} < 0.1Z₀.
 - possibly due to resolution limit of our simulation
- Our simulation can not resolve very low-mass galaxies (< 10⁷M_☉).
 - Very low-mass galaxies maybe important for very low-metal star formation (< 0.01Z₀).
- We should NOT conclude Zcrit ≤ 0.01Z₀ is OK.

Effect of Luv Overestimation

ad hoc test to the effect of the overestimation

- We reduce UV luminosity of brightest galaxies, and see how the results change.
- The conclusion is not largely affected.
 - **Z**_{crit} < $0.5Z_{\odot}$ is favorable.

Effect of Luv Overestimation

ad hoc test to the effect of the overestimation

- We reduce UV luminosity of brightest galaxies, and see how the results change.
- The conclusion is not largely affected.
 - **Z**_{crit} < $0.5Z_{\odot}$ is favorable.

Dust Effect

- We choose E_{B-V} < E_{B-V,crit}
 as a "identifiable" host
 galaxies.
 - RGRB ∝ SFR in each galaxy.
- EB-V,crit ~ 0.03 is
 preferable to reproduce
 GRB hosts.

Required E(B-V)_{crit} is not realistic (too small).

Summary

We have reproduced the luminosity distributions of GRB/SN host galaxies at z ~ 1 in cosmological simulation assuming GRBs occur only in Z < Z_{crit} environment.

■ Our results favor Z_{crit} < 0.5Z_☉.

- This supports the suggestion of studies using stellar evolution models, rather than previous studies with empirical methods.
- released on arXiv this Monday (1006:5033)