# New results on sub-Chandrasekhar mass explosions of White Dwarfs

#### Markus Kromer S. A. Sim, M. Fink, F. K. Röpke, I. R. Seitenzahl, W. Hillebrandt

Max-Planck-Institut für Astrophysik, Garching, Germany

XXVIth IAP Annual Colloquium Paris 28.06.-02.07.2010



- CO WD accretes He from a He-rich companion star
- He flash triggers a detonation in the shell



- CO WD accretes He from a He-rich companion star
- He flash triggers a detonation in the shell
- Shock-compression ignites a secondary detonation in the core



- CO WD accretes He from a He-rich companion star
- He flash triggers a detonation in the shell
- Shock-compression ignites a secondary detonation in the core



- + WD mass direct parameter to explain range of observed <sup>56</sup>Ni yields
- + Progenitors should be frequent
- + Possible link to stellar population

- CO WD accretes He from a He-rich companion star
- He flash triggers a detonation in the shell
- Shock-compression ignites a secondary detonation in the core



- + WD mass direct parameter to explain range of observed <sup>56</sup>Ni yields
- + Progenitors should be frequent
- + Possible link to stellar population
- Robustness of core ignition
- Problems in fitting observational data (Höflich & Khokhlov 1996, Nugent et al. 1997)

# New hydro simulations

- Less massive helium shells than previously thought may detonate (Bildsten et al. 2007)
- Can these shell detonations trigger core detonations?

# New hydro simulations

- Less massive helium shells than previously thought may detonate (Bildsten et al. 2007)
- Can these shell detonations trigger core detonations?
- Fink et al. (2010) investigate six models

| Model | $M_{\rm tot}/M_{\odot}$ | $M_{\rm core}/M_{\odot}$ | M <sub>shell</sub> /M <sub>☉</sub> |
|-------|-------------------------|--------------------------|------------------------------------|
| 1     | 0.936                   | 0.810                    | 0.126                              |
| 2     | 1.004                   | 0.920                    | 0.084                              |
| 3     | 1.080                   | 1.025                    | 0.055                              |
| 4     | 1.164                   | 1.125                    | 0.039                              |
| 5     | 1.293                   | 1.280                    | 0.013                              |
| 6     | 1.389                   | 1.385                    | 0.004                              |

## New hydro simulations

- Less massive helium shells than previously thought may detonate (Bildsten et al. 2007)
- Can these shell detonations trigger core detonations?
- Fink et al. (2010) investigate six models
  - Surface reduction increases shock strength
  - All models successfully ignite a detonation in the C/O core



# Now calculate synthetic observables for these models applying the ARTIS code (Kromer & Sim 2009, Sim 2007)

- Multi-wavelength:  $\gamma$  to NIR
- Time-dependent
- Fully 3D
- Detailed solution of ionisation and thermal balance equation
- Detailed treatment of radiation/matter interactions
- ⇒ Parameter-free prediction of synthetic observables





| Model 1                      | Core                 | Shell                |
|------------------------------|----------------------|----------------------|
| М                            | 0.810                | 0.126                |
| <i>M</i> ( <sup>56</sup> Ni) | $1.7 \times 10^{-1}$ | $8.4 \times 10^{-4}$ |
| <i>M</i> (Ti)                | $3.9 	imes 10^{-4}$  | $1.1 \times 10^{-2}$ |
| M(Si)                        | $2.7 \times 10^{-1}$ | $4.8 \times 10^{-4}$ |



<sup>2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</sup> 



| Model 2                      | Core                 | Shell                |
|------------------------------|----------------------|----------------------|
| М                            | 0.920                | 0.084                |
| <i>M</i> ( <sup>56</sup> Ni) | $3.4 \times 10^{-1}$ | $1.1 \times 10^{-3}$ |
| M(Ti)                        | $4.6 \times 10^{-4}$ | $7.8 	imes 10^{-3}$  |
| M(Si)                        | $2.5 \times 10^{-1}$ | $2.5 \times 10^{-4}$ |



<sup>2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</sup> 



#### Comparison to observations









#### Promising models

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK



#### Promising models

- + Populate a large range in brightness
- Despite low mass, time-evolution OK

#### Problems

- Peculiar light curves and spectra
- Colours too red

#### Influence of the helium shell



#### Comparison to observations

#### Prospects: modifying the initial shell composition



#### Summary

- Secondary core detonation ignites even for minimum helium shell masses (Fink et al. 2010)
- Models predict correct range of brightness and rise times (Kromer et al. arXiv:1006.4489)
- However, spectral features and colours do not agree
- Origin of this discrepancy is the helium shell material
- Tiny amounts of iron-group elements in outer layers cause severe problems
- Nucleosynthesis?
- Radiative transfer?







# Sim et al. (2010) investigated pure detonations of naked sub-Chandrasekhar mass WDs

- Set of 1D models  $(0.88 1.15 M_{\odot})$
- Hydrodynamics, nucleosynthesis and radiative transfer
- Compared to observed SNe Ia the models explain
  - Range of brightness
  - Rise times
  - Colours
  - Silicon-line ratio
  - Velocity evolution of silicon lines
  - Width-luminosity relation



Multi-wavelength



- Multi-wavelength
- Time-dependent



- Multi-wavelength
- Time-dependent
- Multi-dimensional



Röpke et al. 2007

- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines



- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines
- Non-LTE effects important



- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines
- Non-LTE effects important
- But some simplifications
  - Homologous expansion
  - Sobolev approximation
  - Statistical and thermal equilibrium



Pinto & Eastman 2000

#### Monte Carlo method

- Based on quantized energy flow: energy packets
- Follow the packets propagation through the ejecta
- Microphysical description of radiation/matter interactions
  - $\Rightarrow$  Purely local
  - $\Rightarrow$  Suitable for complex geometries & time-dependence
- Extract spectra and light curves by binning of escaping packets
- Use indivisible energy packets (Abbott & Lucy 1985; Mazzali & Lucy 1993; Lucy 1999, 2005)
  - $\Rightarrow$  Implicit energy conservation
  - $\Rightarrow$  Statistical and thermal equilibrium enforceable (Lucy 2002, 2003)

#### The framework of ARTIS (Kromer & Sim 2009)



Specification of atomic data

Population numbers (excitation/ionization state of the plasma)



- Specification of atomic data
  - CD23:  $4 \times 10^5$  bound-bound transitions
  - BIG:  $8 \times 10^6$  bound-bound transitions
- Population numbers (excitation/ionization state of the plasma)



- Specification of atomic data
  - CD23:  $4 \times 10^5$  bound-bound transitions
  - BIG:  $8 \times 10^6$  bound-bound transitions

Population numbers (excitation/ionization state of the plasma)

- Complete set of NLTE rate equations too expensive
- Instead approximate NLTE treatment (detailed)
  - Consistent solution of photoionization and thermal balance
  - Boltzmann excitation formula
- For comparison: LTE treatment (simple)
  - Saha ionization formula
  - Boltzmann excitation formula

Local radiation field  $J_{\nu}$ 

- Specification of atomic data
  - CD23:  $4 \times 10^5$  bound-bound transitions
  - BIG:  $8 \times 10^6$  bound-bound transitions

Population numbers (excitation/ionization state of the plasma)

- Complete set of NLTE rate equations too expensive
- Instead approximate NLTE treatment (detailed)
  - Consistent solution of photoionization and thermal balance
  - Boltzmann excitation formula
- For comparison: LTE treatment (simple)
  - Saha ionization formula
  - Boltzmann excitation formula
- Local radiation field  $J_{\nu}$ 
  - Extractable from MC simulation, but computationally prohibitive
  - Nebular approximation for detailed treatment:  $J_{\nu} = WB_{\nu}(T_{\rm R})$
  - Black body approximation for simple treatment:  $J_{\nu} = B_{\nu}(T_{\rm J})$

#### Excitation/ionisation treatment

- detailed solution of the ionisation balance
  - assume photoionisation equilibrium

$$\frac{N_{j,k}}{N_{j+1,k}n_{\rm e}} = \frac{\alpha_{j,k}^{\rm sp}}{\Gamma_{j,k}}$$

• derive  $\Gamma_{j,k}$  from Monte Carlo simulation

$$\Gamma_{j,k} \equiv \frac{g_{0,j,k}}{U_{j,k}n_{0,j,k}} \cdot \sum_{i=0}^{\mathcal{N}_{j,k}} n_{i,j,k} \gamma_{i,j,k}$$

- simultaneous solution of the thermal balance equation  $\Rightarrow T_e$ 
  - heating rates from Monte Carlo simulation
  - cooling rates evaluated at T<sub>e</sub>
- use Boltzmann formula evaluated at  $T_{\rm J} = \frac{\pi}{\sigma^4} \langle J \rangle$  for excitation

#### Radiation field

exact radiation field extractable by Monte Carlo estimators

$$J_{\nu}\mathrm{d}
u = rac{1}{4\pi\Delta tV}\sum_{\mathrm{d}
u}\epsilon_{
u}^{\mathrm{cmf}}\mathrm{d}s$$

- *but*: computationally prohibitive
- $\Rightarrow$  parameterise local radiation field in nebular approximation

$$J_{\nu} = W \cdot B_{\nu} \left( T_{R} \right)$$

dilution factor W and radiation temperature  $T_R$  defined as

$$W = \frac{\pi}{\sigma T_{\rm R}^4} \langle J \rangle \qquad T_{\rm R} = \frac{h \langle \nu \rangle}{3.832 k_{\rm B}}$$

# Selecting the next event



#### Macro atom formalism



#### Spectral evolution



#### Influence of ionisation treatment



#### Influence of ionisation treatment



- circles: SN 2001el (Krisciunas 2003)
- CD23 simple
- CD23 detailed

#### Influence of atomic data



- circles: SN 2001el (Krisciunas 2003)
- CD23 simple
- CD23 detailed
- BIG detailed

#### Influence of atomic data



#### Influence of ionisation treatment

#### Ionisation fractions of Fe I, II, III, IV, V versus radial velocity



#### Influence of ionisation treatment



versus time



#### Broad-band light curves



- blue: big detailed
- red: CD23 detailed
- green: CD23 simple
- dashed: STELLA (Blinnikov 1998)
- dotted: SEDONA (Kasen 2006)
- circles: SN 2001el (Krisciunas 2003)

#### Flux redistribution

