Progenitors of Type Ia Supernova and Chemodynamical Simulations of Galaxies

Chiaki Kobayashi (ANU)

超新星爆発と宇宙の化学進化

野本憲一編

Origin of Elements

Supernova explosion and Cosmic chemical evolution Edited by Ken'ichi Nomoto

- ★ SD scenario
- ★ HKN (96) wind model
 - ★ WD+MS & WD+RG systems
- * Accretion of H-rich matter
- ★ → Optically thick winds from WD
 - \star M_{2,RG}~1M_{\odot}, M_{2,MS}~3M_{\odot}
- ★ → Stripping Effect(HKN08)
 - \star max M_{2,MS}~5-7M $_{\odot}$

Metallicity Effect on SNe la

* No SNIa at [Fe/H]<-1.1 (Kobayashi, Tsujimoto, Nomoto, Hachisu, Kato 1998)

Lifetime Distribution (KN09)

Chemical Evolution of galaxies

Chemical Evolution

→ [Fe/H] and [X/Fe] evolve in a galaxy: fossils to trace the evolution history of the galaxy → Galactic Archaeology

[α /Fe]-[Fe/H] relation

[X/Fe]-[Fe/H] relations

Chemodynamical Simulations of galaxies

Cosmological Simulation

See http://www.mso.anu.edu.au/~chiaki/works/ for the movie

Cosmic Star Formation Rate

UV: Lilly+ 95, Connolly+ 97, Madau+ 98, Steidel+ 99, Bouwens+ 03, Giavalisco+ 04, Ouchi+ 04, Iwata+ 03, Bunker+ 04, Schiminovich+ 05, Hα: Gallego+ 95, Perez-Gonzalez+ 03, Gronwall 99, With dust correction Brinchmann+ 04, Tresse & Maddoz 98, Tresse+ 02, X-ray: Norman+ 04, radio: Barger+ 00, Submilli: Hughes+ 98.

CK, Springel, White 2007

Summary

* Chemical Evolution with SD scenario + HKN wind model

Low Z	1 (MS) to 10 (RG) Gyr
High Z	0.1 (MS) to 20(RG) Gyr

★ prompt: 10% (<0.1Gyr), 50% (<1Gyr) in MW-type galaxy

- ★ A large fraction of HNe is required (50% of M>20M_{\odot} @Z<Z_{\odot}, 1% @Z=Z_{\odot}) from
 - ★ [(Zn,Co)/Fe]-[Fe/H] relation in the solar neighborhood
 - ★ Cosmic Star Formation History as feedback sources
- * The metallicity effect (few SNe Ia@[Fe/H]<-1.1)</p>
 - more strongly required from [(α,Mn)/Fe]-[Fe/H] relation in the presence of young population of SNe Ia
 - \star Cosmic SN Ia rate rapidly decreases from z~2
- Properties of Host Galaxies from cosmological chemodynamical simulations

★ Metal-rich for SNIa, metal-poor for GRB, smaller difference@high-z