Hunting for Progenitors in Ancient Remnants

Wolfgang Kerzendorf, Mt Stromlo Observatory with:
Brian Schmidt Mike Bessell

David Yong
Ken'ichi Nomoto
Philipp Podsiadlowski Simon Jeffery
Avishay Gal-Yam
and several others

This star

- will be located in remnant centre
- should have an unusual velocity
- should have a fast rotation
- may have an unusual state

Unusual Velocity

Canal et al. 2004

rotational velocity

Rotation

Results of Simulations

Marietta et al. 2000, Pakmor et al. 2009

Main Sequence and Subgiant

- lose up to $\sim 10 \%$ of envelope
- remain largely unchanged

Giants

- lose 96-98 \% of envelope
- possibly exposed Helium core

In all cases

- It is difficult to accrete SN ejecta onto donor
- All objects remain and should have $L>$ Lo

SN 1572 (Tycho)

SN 1572 (Tycho)

Ruiz-Lapuente et al. 2004

Star-G

Ruiz-Lapuente et al. 2004

- unusual spatial motion
- sub-giant at about right distance
- offset from remnant centre

Kerzendorf et al. 2009

- No rotation

Gonzalez-Hernandez 2009

- Confirmed RP04 stellar parameters

Tycho's Six

No proper motion too far from centre

Ruiz-Lapuente et al. 2004

A Cew hope

- A-Star 10,000K
- [Fe/H]~-I
- v rot= $170 \mathrm{~km} / \mathrm{s}$
- enhanced in C\&O?

A Nan Hope

- A-Star 10,000K
- [Fe/H]~-I
- v rot=

H-epsilon
Weak ca k line

What about Tycho?

- Star G unlikely, but certainly not ruled out
- Star B interesting, but certainly not ruled in
- Look at other remnants and compare!

SNIO06

SNIOO6

Kepler (SN I 604)

Kepler (SNI604)

Hot off the CCDs

What now...

- Not every special star is "special"!
- On that note: Can Star B work?
- See what we get with the other remnants

Zin

Name	Temperature	$\log g$	$[F e / \mathrm{H}]$	Rotation	Distance
Star A	4975 K	2.9	-0.08	$<6 \mathrm{~km} / \mathrm{s}$	0.7 kpc
Star B	$10,000 \mathrm{~K}$	3.7	~-1	$\sim 170 \mathrm{~km} / \mathrm{s}$	5.3 kpc
Star C	4950 K	2.9	+0.09	$<6 \mathrm{~km} / \mathrm{s}$	10.0 kpc
Star D	N/A	N/A	N/A	N/A	N / A
Star E	5825 K	3.4	-0.09	$<6 \mathrm{~km} / \mathrm{s}$	11.5 kpc
Star F	N/A	N / A	N / A	N / A	N / A
Star G	6025	4	-0.08	$<6 \mathrm{~km} / \mathrm{s}$	3.7 kpc

Besancon Model

- I sq degree area
- 21000 stars
- 0-7 kpc
- $-\mathrm{I} 00<\mathrm{v}_{\text {rad }}<40$

