Light Curve Models for Super-Chandrasekhar Candidate SN 2009dc (Kamiya+ '10, in prep.)

Yasuomi Kamiya (Univ. of Tokyo/IPMU)

E-mail: yasuomi.kamiya@ipmu.jp

* * *

K. Nomoto, K. Maeda, M. Tanaka, T. Moriya (UT/IPMU), N. Tominaga (Konan Univ.), S. I. Blinnikov, E. I. Sorokina (ITEP)

Table of Contents

- Introduction and Motivation
 - Observations of extremely luminous SNe Ia
 - Previous study on super-Ch mass WD models
- Models and Calculations
 - Super-Ch mass WD models
 - Multi-band LC calculations
- Results and Discussion
 - Comparison with SN 2009dc
- Summary

Extremely Luminous SNe Ia

ID	M _{peak} [mag]	C II lines	Reference
SN 2003fg	-19.94	?	Howell+ '06
SN 2006gz	-19.74	✓	Hicken+ '07
SN 2007if	-20.4	✓	Scalzo+'10
	-20.4	? <	See
SN 2009dc	-19.90	~~~	
	-19.76	~ ~	Silve n+ 10
normal	-19.3	x? •	

− Estimated M_{56Ni} are ≥1 M_{\odot} .

- Theoretical models have <1 M_{\odot} of ⁵⁶Ni (e.g. Iwamoto+ '99)
- → Super-Chandrasekhar mass WD ($M_{WD} > 1.4 M_{\odot}$)?
 - Or ... asymmetric explosion? (Hillebrandt+ '07)
 - But ... spherically symmetric (SN 2009dc; Tanaka+'10)

Super-Ch Mass WD Models

- Previous study
 - Maeda & Iwamoto '09
 - Simplified sup-Ch models
 - Bolometric LCs
 - → <u>SN 2006gz explainable</u> by super-Ch models
- This study
 - + Multi-band LCs
 - <u>SN 2009dc explainable</u> by super-Ch models?
 - <u>Derive *M*_{WD}, *M*_{56Ni}, ...</u>

XXVIth IAP Annual Colloquium

(Maeda & Iwamoto '09)

Model Construction

- Assumptions
 - 1D (spherical symmetry)
 - ← 09dc polarimetry
 - Homologous expansion
- Parameters
 - $M_{\rm WD}, M_{\rm IPE}, M_{\rm 56Ni}, M_{\rm IME}, M_{\rm CO}$
 - $M_{\text{IPE}} + M_{56\text{Ni}} + M_{\text{IME}} + M_{\text{CO}} = M_{\text{WD}}$
- Procedure
 - 1. Determine parameters
 - 2. Calculate $E_k (= E_n E_b)$
 - $E_n = (1.74 M_{IPE} + 1.56 M_{56Ni} + 1.24 M_{IME})$ x 10⁵¹ [erg]
 - *E*_b by Yoon & Langer ('05; *extrapolated*)
 - 3. Scale the Ch mass WD model (W7; Nomoto+ '84) by
 - $\rho \propto \sqrt{(M_{WD}^5/E_K^3)}, v \propto \sqrt{(E_K/M_{WD})}$
 - 4. Determine abundance distribution
 - Locally mixed, considering low-velocity Si II lines were observed

LC Calculation

- Calculation code
 - STELLA (e.g. Blinnikov+ '9
 - Solves 1D radiation trans⁻
 - Calculates bolometric & UBVRI-band LCs
- Parameter range for SN 2009dc
 - $-M_{\rm WD}$ = 1.8, 2, ..., 2.6 M_{\odot}
 - $-M_{56\mathrm{Ni}}$ = 1.2 M_{\odot}
 - $M_{\rm IPE}/M_{\rm WD} = 0.1, 0.2, ...$
 - $M_{\rm CO}/M_{\rm WD} = 0.1, 0.2, ...$
 - (→ velocity & width)

- SN 2009dc vs. W7
 - (red) Yamanaka+ '10
 - (blue) Silverman+ '10

Comparisons: Examples

Comparisons: Reduced χ^2 (M_{bol} vs. v_{ph})

• $M_{\rm V'P} = 1.8 - 2.6 M_{\odot}$

July 1, 2010

Comparisons: Marginals

Summary

- 4 extremely luminous Type Ia, so far
 Too bright → too much ⁵⁶Ni → super-Ch WD?
- Derive progenitor properties from LC calculations
 - Construct simplified super-Ch models
 - Calculate bolometric and UBVRI-band LCs
 - Compare observations
 - SN2009dc
 - $M_{WD} \ge 2 M_{\odot}$ and $M_{56Ni} = 1.2 M_{\odot}$ w/ thick C+O layer - Marginal: $M_{WD} = 2, 2.2 M_{\odot}$

- Best fitted: $M_{\rm WD}$ = 2.4 M_{\odot}

 <u>What about formations and thermonuclear</u> explosions of super-Ch mass WDs?