Properties of Galaxies hosting Gamma-Ray Bursts

Sandra Savaglio (Max-Planck-Institut für extraterrestrische Physik, Garching)

2.5

XXVI IAP Annual Colloquium 2010, Paris "Progenitors and environments of stellar explosions"

Properties of Galaxies hosting Gamma-Ray Bursts

Sandra Savaglio (Max-Planck-Institut für extraterrestrische Physik, Garching)

2.5

XXVI IAP Annual Colloquium 2010, Paris "Progenitors and environments of stellar explosions"

GRB 011121 redshift z = 0.3623.98 billion years ago

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

1049 ergs: gravitational waves

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves 10⁵¹ ergs: γ -ray photons, in a couple of minutes

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy
10⁵⁴ ergs: neutrinos

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy
10⁵⁴ ergs: neutrinos

Rates (Long):

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy
10⁵⁴ ergs: neutrinos

Rates (Long): 1/1000: GRB/CC-SN

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy
10⁵⁴ ergs: neutrinos

Rates (Long):

1/1000: GRB/CC-SN 1/10⁵ yr⁻¹: rate in a galaxy

GRB 011121 redshift z = 0.3623.98 billion years ago

Energy emitted (Long):

10⁴⁹ ergs: gravitational waves
10⁵¹ ergs: γ-ray photons, in a couple of minutes
10⁵³ ergs: kinetic energy
10⁵⁴ ergs: neutrinos

Rates (Long):

1/1000: GRB/CC-SN
1/10⁵ yr⁻¹: rate in a galaxy
Several a day: full sky rate detectable from Earth

GRBs as cosmological probes

Brightest source recorded by humanity (z=0.937)

GRB 080913 Second most distant object known (z=6.7)

GRB 080913 Second most distant object known (z=6.7)

GRB 090423 The most distant object known (z=8.26)

Abdo et al. (2009a)

McBreen, Krühler, Rau, Greiner et al. (2010) Rau, McBreen, Krühler, Greiner (2009)

Abdo et al. (2009a)

McBreen, Krühler, Rau, Greiner et al. (2010) Rau, McBreen, Krühler, Greiner (2009)

GRB 090510

Lorentz Invariance tested to highest precision (z=0.903)

Galama et al. (1998)

GRB with spectroscopically confirmed SN

GRB	Z	12 + log(O/H) (<i>T_e</i>)	Host type	Mв	References
980425	0.0085	8.25	Dwarf spiral	-17.6	Hammer et al. (2006)
020903	0.25	7.97	Irregular	-18.8	Hammer et al. (2006)
030329	0.168	7.72	Irregular	-16.5	Levesque et al. (2010)
031203	0.105	8.02 ± 0.15	Irregular	-21.0	Prochaska et al. (2004)
060218	0.0335	7.54+0.16	Irregular	-15.9	Wiersema et al. (2007)
100316D	0.0591	8.23 ± 0.15	Spiral? Irr?	-19	Starling et al. (2010)

GRB host galaxies

Fruchter et al. (2006) (see also Svensson et al. 2010)

Fruchter et al. (2006) (see also Svensson et al. 2010)

Fruchter et al. (2006) (see also Svensson et al. 2010)

Kelly, Kirshner & Pahre (2008)

Light distribution of Wolf-Rayet stars vs. GRBs

Leloudas et al. (2010) (see also Han et al. 2010)

Light distribution of Wolf-Rayet stars vs. GRBs

Leloudas et al. (2010) (see also Han et al. 2010)

Light distribution of Wolf-Rayet stars vs. GRBs

Leloudas et al. (2010) (see also Han et al. 2010)

GRBs to investigate the Cosmic Chemical Evolution

GRB

¢

15

Cold interstellar medium ($T \leq 1000$ K) Heavy element enrichment Dust extinction Dust depletion Molecular hydrogen

GRB

1

115

Warm interstellar medium ($T \sim 10^4$ K)Heavy element enrichmentDust extinctionStar formation rateGas electron densityGas temperature

GRBs as cosmological probes

GRBs as cosmological probes

Savaglio (2006)

Savaglio (2006)

Savaglio (2006)

Savaglio (2006)

How can we relate the GRB-host population to galaxy formation & evolution?

The Galaxy Evolution context

Madau plot per stellar-mass bin

Juneau et al. (2005)

The Galaxy Evolution context

Mass-metallicity relation

Savaglio, Glazebrook, Le Borgne, et al. (2005) (see also Tremonti et al. '04, Erb et al. '06, Maiolino et al. '08)

The Galaxy Evolution context

Mass-metallicity relation

Savaglio, Glazebrook, Le Borgne, et al. (2005) (see also Tremonti et al. '04, Erb et al. '06, Maiolino et al. '08)

Pontzen et al. (2010) (see also Fynbo et al. 2008)

Pontzen et al. (2010) (see also Fynbo et al. 2008)

Pontzen et al. (2009)

Pontzen et al. (2009)

Pontzen et al. (2009)

Mass-Metallicity relation

Levesque et al. (2010)

Mass-Metallicity relation

Galaxy stellar mass

Levesque et al. (2010)

Metallicity

Mass-Metallicity relation

Metallicity

Galaxy stellar mass

Levesque et al. (2010)

Related publications:

Campisi, M. A., De Lucia, G., Li, L., Mao, S., & Kang, X. 2009, MNRAS, 400, 1613 Chen, H.-W. et al. 2009, ApJ, 691, 152 Chisari, N. E., Tissera, P. B., & Pellizza, L. J. 2010, MNRAS, submitted arXiv:1005.4036 Fynbo, J. P. U.; Prochaska J. X.; Sommer-Larsen J.; Dessauges-Zavadsky, M., Møller P. 2008, ApJ, 683, 321 Han, X. H., Hammer, F., Liang, Y. C., Flores, H., Rodrigues, M., Hou, J. L., Wei, J. Y. 2010, A&A, 514, 24 Kocevski, D., West, A. A., & Modjaz, M. 2009, ApJ, 702, 377 Kretchmer, C., & Ravindranath, S. 2007, ApJ, 654, 172 Levesque, E. M., Kewley, L. J., Graham, J. F., & Fruchter, A. S. 2010, ApJ, 712, L26 Modjaz, M., et al. 2008, AJ, 135, 1136 Niino, Y., et al. 2010, submitted, arXiv:1006.5033

Is there a connection between sub-mm galaxies and GRB hosts ?

Savaglio, Rau, Greiner, Krühler et al. (Science, sub.)

Page et al. (2009)

Sub-millimeter Galaxies

CHANDRA X-RAY

Sub-millimeter Galaxies

Computer simulation

SMG 123616.1+621513

CHANDRA X-RAY

Star Formation Rate Density of the Universe

Star Formation Rate Density of the Universe

Chary, Berger, & Cowie (2007) Yüksel, Kistler, Beacom, & Hopkins (2008) Kistler et al. (2009)

Star Formation Rate Density of the Universe

Chary, Berger, & Cowie (2007) Yüksel, Kistler, Beacom, & Hopkins (2008) Kistler et al. (2009)

Michałowski, Hjorth & Watson (2009)

Conclusions

2 No redshift evolution of chemical enrichment

2 No redshift evolution of chemical enrichment

3 GRB events driven by star formation ?

2 No redshift evolution of chemical enrichment

3 GRB events driven by star formation ?

4 Star formation activity goes from massive galaxies at high z to less-massive galaxies at low z

2 No redshift evolution of chemical enrichment

3 GRB events driven by star formation ?

4 Star formation activity goes from massive galaxies at high z to less-massive galaxies at low z

5 Are some high-z GRB hosts similar to high-z Sub-mm Galaxies ?

2 No redshift evolution of chemical enrichment

3 GRB events driven by star formation ?

4 Star formation activity goes from massive galaxies at high z to less-massive galaxies at low z

5 Are some high-z GRB hosts similar to high-z Sub-mm Galaxies ?

