

Progenitors and environments of stellar explosions, IAP, Paris, France, June 28, 2010

Presupernova **Evolution of Massive Stars**

Alexander Heger Stan Woosley Rob Hoffman Candace Joggerst Weiqun Zhang

Overview

 Presupernova Evolution Varieties of Stellar Deaths Uncertianties Nucleosynthesis

Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures

Nuclear burning stages

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	Не	¹⁴ N	0.02	10 ⁷	$4 H \rightarrow {}^{CNO} 4He$
He 🖌	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	$3 \text{ He}^4 \rightarrow {}^{12}\text{C}$ ${}^{12}\text{C}(\alpha, \gamma){}^{16}\text{O}$
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	Al, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
o	Si, S	Cl, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Explosive Nucleosynthesis

Fuel	Main Product	Secondary Product	Т (10 ⁹ К)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process	-	>10 Iow Y _e	1	(n, γ), β [–]
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, AI, P	2 - 3	5	(γ,α) , (α,γ)
		p-process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(γ ,n)
		v -process		5	(v, v'), (v, e⁻)

Things that blow up

- CO white dwarf \rightarrow Type Ia SN, E \approx 1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line Ib/a SN, "hypernova"
- Pulsational pair SN \rightarrow multiple, nested Type I/II SN
- Very massive stars \rightarrow pair SN, \leq 100B (1B=10⁵¹ erg)
- Very massive collapsar \rightarrow IMBH, SN, hard transient
- GR He instability → >100 B SN+SMBH, or 10,000 B
- Supermassive stars $\rightarrow \geq 100000$ B SN or SMBH

MAS

Energy Scales

Log E	Explosion	Thermonuclear
39	X-ray Bursts	\checkmark
40	Long-Duration He Bursts	\checkmark
41		
42	X-ray Superbursts	\checkmark
43		
44		
45		
46	Classical Novae	\checkmark
48	Faint SN (visible LC?)	
49	SN (visible LC)	
50	Bright SN (LC?)	
51	SN (kinetic)	SN Type Ia total
52	Hypernova? GRB?	Pair-SN total (low-mass end)
53	SN (neutrinos – several 10 ⁵³ erg)	Pair-SN total (upper limit)
54	(a lot of energy - 0.5 $M_{\odot} c^2$)	
55	GR He SN	GR He SN (upper limit)
56	GR H SN, Z > 0 (Fuller <i>et al.</i> 1986)	\checkmark

metals 1 Elected

Mass Loss due to Giant Eruptions?

How do the most massive stars evolve?

- Reduced mass loss on the main sequence followed by LBV & giant eruptions?
- What are these eruptions? (physics, number, recurrence)
- When do they occur? (internal evolution stage?)
- How do we model these eruptions?
- Pulsational Pair-Instability Supernovae (PPSN)?

Mass Loss due to Critical Rotation

How important is mass loss due to critical (or fast) rotation?
How do we quantify mass loss and angular momentum loss?
How does it effect our stellar models?

(Langer, Meynet, Maeder, Hirschi,...)

Black Holes and GRBs from Rotating Stars

A small fraction of single stars is born rotating rapidly

The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum.

(Yoon & Langer 2006)

Sun 2.0

Sun 3.0

Sun 3.0

15 solar mass star yields for different initial abundances

- •over-all pattern remains remarkably consistent
- but details details in weak s-process pattern do exists
- sensitivity to nuclear reaction rates and model physics can be well established for *specific* stellar models

25 solar mass star s-process yields for different evolution stages

Light Isotope Yields - ${}^{12}C(\alpha,\gamma)^{16}O$

25 solar mass star: central values

Central Carbon Mass Fraction

Remnant Masses – NS or BH?

Mixing in 25 M_O Stars [Z]=0 (solar) Z=0 (prim

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope

Simulations: Candace Joggerst (UCSC/LANL T-2)

Fallback and Remnants

➔ Pop III stars show much more fallback than modern Pop I stars due to their compact hydrogen envelope

(Zhang, Woosley, Heger 2007)

Supernovae, Nucleosynthesis, & Mixing

Pop III Nucleosynthesis

Mg yield (ejecta mass fraction)

Heger & Woosley, in prep., (2010)

Pop III Star Core Masses

1.6 emnant mass (solar masses

1.8

1.2

1,4

1.6 mass (solar masses

1.8

1.2

1,4

Pop III Star Remnant Masses

(from Zhang, Woosley, Heger 2007)

Summary

- Uncertainties in stellar and supernova physics (and variations of author's choices) limit association of progenitor mass and supernova and remnant.
- Outcome of stellar evolution is not "smooth" due to physics of shell burning – not even with ideal numerical implementation & physics
- Degeneracy of unknown initial parameters rotation, composition, binarity.
- Stellar and supernova "weather"?