SSS phase of single degenerate type Ia supernova progenitors in early type galaxies

Izumi Hachisu (University of Tokyo)

Mariko Kato (Kieo Univ.) and Ken'ichi Nomoto (University of Tokyo)

Recent Criticisms on the SD Model Recent Criticisms on the SD Model

2. Delay Time Distribution of SNe Ia [e.g. Totani et al. 2008] ○ The SD model cannot reproduce ~t^{-1} over 10 Gyr

Delay Time Distribution of SNe Ia

Delay Time Distribution of SNe Ia

O SD model cannot reproduce recent Delay Time Distribution observation ???

[Totani et al. 2008, Maoz et al. 2010]

~t^{-1} dependence over 10 Gyr

• SD model produces only a young population < 1Gyr

Evolutionary Paths to SNe Ia Two main paths: "WD + MS" and "WD + RG"

Winds from White Dwarfs

"Accretion Wind Evolution" (Hachisu, Kato, & Nomoto 1996, ApJ, 470, L97)

Mass stripping rate

Potential energy difference = Kinetic energy dissipation by shock $\frac{GM}{a} (\phi_1 - \phi_3) \dot{M}_{2,\text{strip}} = \frac{1}{2} v_{\text{wind}}^2 \dot{M}_{\text{wind}} \cdot \eta_{\text{eff}} \cdot g(q)$ g(q) is a function only of the mass ratio q, including solid angle subtended by the companion and shock effect by wind

$$\dot{M}_{2,\text{strip}} = c_1 \dot{M}_{\text{wind}}$$

 $c_1 = \frac{\eta_{\text{eff}} \cdot g(q)}{\phi_1 - \phi_3} \frac{1}{2} v_{\text{wind}}^2 \frac{a}{GM}$
where $M = M_1 + M_2$, $a = \text{separation}$
Hachisu and Kato (2003)

Large mass stripping effect

Large mass stripping effect

• Wind velocity of ~4000 km/s • Orbital velocity of ~400 km/s for WD+MS $c_1 \approx 0.1 \left(\frac{v_{\text{wind}}}{v_{\text{orb}}}\right)^2 = 0.1 \left(\frac{4000 \text{ km/s}}{400 \text{ km/s}}\right)^2 \sim 10$

Wind velocity of ~1000 km/s
 Orbital velocity of ~40 km/s for WD+RG

$$c_1 \approx 0.1 \left(\frac{v_{\text{wind}}}{v_{\text{orb}}}\right)^2 = 0.1 \left(\frac{1000 \text{ km/s}}{40 \text{ km/s}}\right)^2 \sim 60$$

 $\dot{M}_{2,\text{strip}} \sim (10 - 60) \dot{M}_{\text{wind}}$

Path on the mass-accretion map

Path on the mass-accretion map

• exploding during the wind phase

 \rightarrow forming a equatorial circumstellar disk (a few Mo)

Upper-limit Mass of MS Companion Upper-limit Mass of MS Companion

- Larger c1 stabilizes mass-transfer
 - \rightarrow more massive companion for SN 1a (WD+MS),
- \rightarrow delayed dynamical instability region disappears

Delay Time Distribution of SD Model Delay Time Distribution of SD Model

young population from "WD+MS"
 old population from "WD+RG"

Average number of SSSs

duration of a SSS phase $P_{SSS} \sim 2.5 \times 10^5$ yr $\rightarrow \sim 8$ times shorter than Gilfanov & Bogdan's (2010) value

• birth rate of SNe Ia in early type galaxies

$$\dot{N}_{\rm SN1a} \sim \frac{1}{2} \times 3.5 \times 10^{-4} \left(\frac{L_K}{10^{10} L_{K,\odot}} \right) \text{ yr}^{-1}$$

[from Gilfanov & Bogdan (2010)]

• total number of WDs in SSS phase $N_{\rm WD,SSS} = P_{\rm SSS} \dot{N}_{\rm SN1a} \sim 40 \left(\frac{L_K}{10^{10} L_{K,\odot}} \right)$

Typical X-ray flux of symbiotic stars Typical X-ray flux of symbiotic stars

 No correct atmospheric model of mass-accreting white dwarfs
 No full knowledge on the circumstellar matter in symbiotic stars

absorbed flux of SMC 3
 brightest SSS in symbiotic stars
 (0.3-0.7 keV band at 61 kpc, NH=several x 10^{20})

 $\ell_{\rm x,obs} \sim 0.8 \times 10^{36} \ erg \ s^{-1}$

[from Jordan et al. (1996); Orio et al. (2003)]

► ~10 times smaller flux than Gilfanov & Bogdan's (2010) value

SSS flux from early type galaxies SSS flux from early type galaxies

• total (0.3-0.7 keV) flux

 $L_{\rm X,SSS} = N_{\rm WD,SSS} \times \ell_{\rm X,obs} \sim 3 \times 10^{37} \text{ erg s}^{-1} \left(\frac{L_K}{10^{10} L_{K,\odot}}\right)$

galaxy	$\frac{L_K^{\mathbf{a}}}{(10^{10}L_{K,\odot})}$	$N_{\rm WD,SSS}{}^{\rm a}$	$N_{\rm WD,SSS}{}^{\rm b}$	$L_{\rm X,obs}^{\rm a}$ (10 ³⁷ erg s ⁻¹)	$L_{\rm X,SSS}^{\rm c}$ (10 ³⁷ erg s ⁻¹)
M32 NGC 3377	$\begin{array}{c} 0.085\\ 2.0\end{array}$	$\begin{array}{c} 25\\580\end{array}$	$\frac{3}{80}$	$\begin{array}{c} 0.15 \\ 4.7 \end{array}$	$\begin{array}{c} 0.25 \\ 6.0 \end{array}$
M31 bulge	3.7	1100	150	6.3	11
M105	4.1	1200	160	8.3	12
NGC 4278 NGC 3585	$\frac{5.5}{15}$	4400	600	$\frac{15}{38}$	45

a ... Gilfanov & Bogdan's (2010) results b,c ... present results

Summary (1)

1. "Accretion wind evolution" is a key evolutionary process to Type Ia supernovae.

2. "Stripping effect by winds" also stabilizes the mass transfer in binaries.

Summary (2)

Summary (2)

3. Both "WD+MS" and "WD+RG" systems contribute to the progenitors of SNe Ia, consistent with the observed DTD

Summary (3)

Summary (3)

- Supersoft X-ray flux from SD progenitors are consistent with the observation (0.3-0.7 keV), when
 - (1) duration of SSS phase is $P_{\rm SSS} \sim 2.5 \times 10^5 {\rm yr}$
 - (2) SSS flux from an individual source is $\ell_{\rm x,obs} \sim 0.8 \times 10^{36} \ {\rm erg \ s^{-1}}$

(3) birth rate of SNe Ia in early type galaxies is $\dot{N}_{\rm SN1a} \sim \frac{1}{2} \times 3.5 \times 10^{-4} \left(\frac{L_K}{10^{10} L_{K,\odot}}\right) \ {\rm yr}^{-1}$