Progenitors of Type Ia Supernovae in early-type galaxies

Marat Gilfanov & Akos Bogdan MPA, Garching

Accretion scenario predicts:

- too large (soft) X-ray luminosity of E/S0 galaxies, inconsistent with Chandra observations (too many SSS – Di Stefano, 2010)
- too frequent Classical/Recurrent Novae explosions

Collective luminosity of accreting WDs

$$L_{WD,nuc} = \dot{M} X_H \varepsilon_H \sim 10^{37-38} \ erg/sec$$
$$N_{WD} = \frac{\Delta M_{WD}}{\dot{M}} \times v_{SNIa} \sim 10^4$$
$$L_{tot} = L_{WD} N_{WD} = \Delta M_{WD} X_H \varepsilon_H v_{SNIa}$$

- compare with Chandra observations of nearby elliptical galaxies
 - ✓ Interstellar absorption
 - ✓ bolometric corrections
 - ✓ spectral energy distribution of accreting white dwarfs and its dependence on the white dwarfs mass

The effective temperature

$$T_{eff} \approx \left(\frac{L_{nucl}}{4\pi R_{ph}^2 \sigma_{SB}}\right)^{1/4} \sim 67 \left(\frac{\dot{M}}{5 \cdot 10^{-7} M_{\Theta} / yr}\right)^{1/4} \left(\frac{R_{ph}}{10^{-2} R_{\Theta}}\right)^{-1/2} eV$$

 R_{ph} – photospheric radius

Marat Gilfanov

The effective temperature

$$T_{eff} \approx \left(\frac{L_{nucl}}{4\pi R_{ph}^2 \sigma_{SB}}\right)^{1/4} \sim 67 \left(\frac{\dot{M}}{5 \cdot 10^{-7} M_{\Theta} / yr}\right)^{1/4} \left(\frac{R_{ph}}{10^{-2} R_{\Theta}}\right)^{-1/2} eV$$

- R_{ph} photospheric radius
- photospheric radius ~
 WD radius
- WD radius decreases with mass
- color temperature increases with WD mass

Luminosity of SNIa progenitors

combined luminosity of all SNIa progenitors in M105 predicted in the single degenerate scenario

Marat Gilfanov

Comparison with Chandra data

Name	L _κ	L _x erg/s observed	L _x erg/s predicted	NH 10 ²⁰ cm ⁻²
M32	8.5 · 10 ⁸	1.5 · 10 ³⁶	7.1 · 10 ³⁷	6.3
NGC3377	2.0 · 10 ¹⁰	4.7 · 10 ³⁷	2.7 · 10 ³⁹	4.2
M31 bulge	3.7 · 10 ¹⁰	6.3 · 10 ³⁷	2.3 · 10 ³⁹	6.7
M105	4.1 · 10 ¹⁰	8.3 · 10 ³⁷	5.5 · 10 ³⁹	2.8
NGC4278	5.5 · 10 ¹⁰	1.5 · 10 ³⁸	7.6 · 10 ³⁹	1.8
NGC3585	1.5 · 10 ¹¹	3.8 · 10 ³⁸	1.4 · 10 ⁴⁰	5.6

predicted L_x: initial WD mass 1.2 M_{\odot} , mass accretion rate $10^{-7} M_{\odot}/yr$, intrinsic and interstellar absorption taken into account

predicted L_x exceeds observed L_x by a factor of 30-50

Comparison with Chandra data

Name	L _K	L _x erg/s observed	L _x erg/s predicted	NH 10 ²⁰ cm ⁻²			
M32	0 5 408	4 - 4036	7 4 4 0 37	<u> </u>			
NGC3 Contribution of super-soft sources							
M31 b	to the SNIa rate						
M105	5						
NGC4		~~~~~/ 0					
NGC3585	1.5 · 10 ¹¹	3.8 · 10 ³⁸	1.4 · 10 ⁴⁰	5.6			

predicted L_x: initial WD mass 1.2 M_{\odot}, mass accretion rate 10⁻⁷ M_{\odot}/yr, intrinsic and interstellar absorption taken into account

predicted L_x exceeds observed L_x by a factor of 30-50

Why early type galaxies?

- low intrinsic absorption, log(NH)≤20
- old stellar populations, age>5 Gyrs lack of massive donors (M_{donor}<1.1-1.2 M_☉) requires high mass accumulation efficiency by the WD

age pre-selection of the sample is taken into account by reducing the SNIa rate for E/S0 galaxies (Mannucci et al) by half

$$v_{SNIa} = \frac{1}{2} \times (4.4 \cdot 10^{-3} \text{ yr}^{-1} \text{ per } 10^{11} \text{ Msun})$$

Marat Gilfanov

Population synthesis context

previous calculations assumed 100% of time in the steady burning regime

plausible binary evolution tracks spend ~moderate or ~small fraction of time in the steady burning regime

Marat Gilfanov

Wind regime

- low mass accumulation efficiency ≤1/3 (Hachisu et al)
 ≥2/3 of material leaves the system with the wind
- available mass budget:

 $M_{donor}{<}1.0{-}1.2~M_{\odot}$ $M_{He~core}{\sim}0.3~M_{\odot}$ $M{\leq}0.2{-}0.3~M_{\odot}$ are available for the WD growth

 the initial WD mass ≥1.1-1.2 M_☉ is required in order to reach the Chandrasekhar mass in the wind regime ~exceeds the maximum initial mass of CO WD

Recurrent/Classical Novae

in the accretion scenario Nova rate ~ SN rate

 $\Delta M_{CN} \dot{N}_{CN} \sim \Delta M_{SNIa} \dot{N}_{SNIa}$ $\Delta M_{CN} \sim 10^{-6} - 10^{-5} M_{\Theta}; \quad \Delta M_{SNIa} \sim 0.3 - 0.5 M_{\Theta}$ $\dot{N}_{CN} \sim 10^{5} - 10^{6} \dot{N}_{SNIa}$

more precisely:
$$\dot{N}_{CN} \approx \int \frac{dM_{WD}}{\Delta M_{CN}(M_{WD},\dot{M})} \dot{N}_{SNIa}$$

Marat Gilfanov

Recurrent/Classical Novae

frequency of fast Novae predicted in the accretion scenario for the bulge of M31 ≥300-500 per year

observed: 5.2±1.1 per year

extensive Nova searches in M31 (e.g. Arp, 1956)

theory is based on Prialnik, Kovetz et al. observations: Arp; Capaccioli et al.

outburst decay time t₃, days

Marat Gilfanov

Recurrent/Classical Novae

frequency of fast Novae **predicted in the accretion scenario** for the bulge of M31 ≥300-500 per year

observed: 5.2±1.1 per year

extensive Nova searches in M31 (e.g. Arp, 1956)

Population synthesis context

Marat Gilfanov

Conclusion

- No more than ~5% of SNIa in elliptical galaxies are produced by white dwarfs accreting in binary systems and detonating at the Chandrasekhar mass limit
- alternatives:
 - white dwarf mergers
 - explosions of sub-Chandrasekhar white dwarfs
- unless our understanding of accretion and nuclear burning on the WD surface are fundamentally flawed
- this applies to early type galaxies; SNIa in star-forming galaxies may be different

Thank you!

Marat Gilfanov