The progenitors of supernovae at various metallicities

Cyril Georgy

Geneva University Observatory, Switzerland

Georges Meynet, Sylvia Ekström, André Maeder Geneva Observatory

> Rolf Walder, Doris Folini (CRAL) Raphaël Hirschi (Keele)

Paris, June 28th 2010

Outline

What single star models tell us about the progenitors of SNe at various metallicities?

- The progenitor type as a function of *M*_{ini} and *Z*
 - Remnant mass
 - Chemical composition of the ejecta
- Supernova type
 - as a function of *M*_{ini} and *Z*
 - SN type ratio vs Z

Stellar models

Grid used: 27 rotating stellar models (Meynet & Maeder 2003, 2005)

- $\bullet\,$ masses from 12 to 120 M_{\odot}
- 4 metallicities: Z = 0.004 (~ SMC), Z = 0.008 (~ LMC), Z = 0.020 (~ solar) and Z = 0.040
- mean MS velocity: $v_{eq} \sim 200 \text{ km s}^{-1}$ (Huang & Gies 2006)
- metallicity-dependent stellar winds (Vink et al. 2000,2001, de Jager et al. 1988, Nugis & Lamer 2000)
- followed up to the end of central He-burning

WR classification Nature of the progenitor Remnant type

WR classification

Depends on the surface property of the star !

WR classification Nature of the progenitor Remnant type

WR classification

Depends on the surface property of the star !

Star with $\log(T_{eff}) > 4$ and $X_{S} < 0.4 \Rightarrow WR$

- If $X_{\rm S} > 0 \Rightarrow {\rm WNL}$
- If $X_{\rm S} = 0$ and $X_{\rm N} > X_{\rm C} \Rightarrow {\sf WNE}$
- If $X_{\rm S} = 0$, $X_{\rm N} < X_{\rm C}$ and $\frac{\rm C+O}{\rm He} < 1 \Rightarrow \rm WC$
- If $X_{\rm S} = 0$, $X_{\rm N} < X_{\rm C}$ and $\frac{\rm C+O}{\rm He} > 1 \Rightarrow \rm WO$

WR classification Nature of the progenitor Remnant type

WR classification

WR population

- Reproduces quite well the WR / O star ratio in the covered metallicity range, as well as the fraction of WR star at the transition between WN → WC;
- Reproduces the WN / WC ratio at low metallicity, but not at solar and super-solar metallicity (importance of LBV phase?)

WR classification Nature of the progenitor Remnant type

SN progenitor

• WR mass range increases with Z

Cyril Georgy Supernova progenitors

WR classification Nature of the progenitor Remnant type

- WR mass range increases with Z
- WN mass range is narrow

WR classification Nature of the progenitor Remnant type

- WR mass range increases with Z
- WN mass range is narrow
- no (or very few) WNE at low metallicity

WR classification Nature of the progenitor Remnant type

- WR mass range increases with Z
- WN mass range is narrow
- no (or very few) WNE at low metallicity
- WO only in a small mass and metallicity domain

WR classification Nature of the progenitor Remnant type

- WR mass range increases with Z
- WN mass range is narrow
- no (or very few) WNE at low metallicity
- WO only in a small mass and metallicity domain
- WO only at low metallicity (6 among 8 observed WO stars have Z < 0.9 Z_☉.)

SN remnant

WR classification Nature of the progenitor Remnant type

Remnant mass from Hirschi et al. (2005). Assuming $M_{max,NS} = 2.7 M_{\odot}$ (Freire et al. 2008):

• Up to $Z \sim 0.01$: all WR \Rightarrow BH

SN remnant

WR classification Nature of the progenitor Remnant type

Remnant mass from Hirschi et al. (2005). Assuming $M_{\rm max,NS} = 2.7 \, M_{\odot}$ (Freire et al. 2008):

- Up to $Z \sim 0.01$: all WR \Rightarrow BH
- Inferior mass limit for BH increases with Z

SN remnant

WR classification Nature of the progenito Remnant type

Remnant mass from Hirschi et al. (2005). Assuming $M_{\rm max,NS} = 2.7 \, M_{\odot}$ (Freire et al. 2008):

- Up to $Z \sim 0.01$: all WR \Rightarrow BH
- Inferior mass limit for BH increases with Z
- From Z ~ Z_☉, upper mass limit for BH, decreasing with Z (winds)

SN remnant

WR classification Nature of the progenito Remnant type

Remnant mass from Hirschi et al. (2005). Assuming $M_{\rm max,NS} = 2.7 \, M_{\odot}$ (Freire et al. 2008):

- Up to $Z \sim 0.01$: all WR \Rightarrow BH
- Inferior mass limit for BH increases with Z
- From Z ~ Z_☉, upper mass limit for BH, decreasing with Z (winds)
- At $Z \sim 2Z_{\odot}$ and above: no more BH

SN type criterion Type of SN vs M_{ini} and Z Supernova rate

Chemical composition of the ejecta

• For most of supergiants: H and He > 70%

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

Chemical composition of the ejecta

- For most of supergiants: H and He > 70%
- $\bullet\,$ For WN: $H < 1\,M_{\odot},\,He > 1\,M_{\odot},\,3/4$ heavy elements, more C and O than SG

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

Chemical composition of the ejecta

- For most of supergiants: H and He > 70%
- $\bullet\,$ For WN: $H < 1\,M_{\odot},\,He > 1\,M_{\odot},\,3/4$ heavy elements, more C and O than SG
- For WC/WO: heavy elements > 90%

Chemical composition of the ejecta

- For most of supergiants: H and He > 70%
- $\bullet\,$ For WN: $H < 1\,M_{\odot},\,He > 1\,M_{\odot},\,3/4$ heavy elements, more C and O than SG
- For WC/WO: heavy elements > 90%
- $\bullet~$ No models completely without He ! At least $\sim~0.3\,M_{\odot}$ (cf. Eldridge & Tout 2004)

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

SN type criterion

type	m _H	m _{He}
SN II	> 0	-
SN Ib	0	$> 0.6M_{\odot}$
SN Ic	0	$< 0.6M_{\odot}$

The choice of the helium mass limit between SN lb and lc only slightly affects the results.

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

SN type as a function of $M_{\rm ini}$ and Z

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

SN type as a function of $M_{\rm ini}$ and Z

 SN lb recovers WNE / WNL area, and the lower range of mass of WC stars

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

SN type as a function of $M_{\rm ini}$ and Z

- At low Z: only SN II (low mass loss rate)
- SN lb recovers WNE / WNL area, and the lower range of mass of WC stars
- SN Ic have always a WC or a WO progenitors

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

SN type as a function of $M_{\rm ini}$ and Z

 No SN lbc at low metallicity !

SN type criterion Type of SN vs $M_{\rm ini}$ and Z Supernova rate

SN lbc ratio vs Z

With BH-SNe:

- Increase with Z
- General trend reproduced

SN type criterion Type of SN vs $M_{\rm ini}$ and Z Supernova rate

SN lbc ratio vs Z

With BH-SNe:

- Increase with Z
- General trend reproduced

No BH-SNe:

- Over-solar Z : OK
- Sub-solar Z: Not enough (or not at all) SN Ibc

SN type criterion Type of SN vs $M_{\rm ini}$ and Z Supernova rate

SN lb and lc ratio vs Z

- SN lb / SN II peaks at Z_{\odot}
- general trend: increase of SN Ic , decrease of SN Ib above Z_{\odot}

SN type criterion Type of SN vs *M*_{ini} and *Z* **Supernova rate**

SN lb and lc ratio vs Z

- Confirms the increase of type Ic SNe with respect to type Ib's at high Z.
- Trend reproduced by the models.

SN type criterion Type of SN vs $M_{\rm ini}$ and Z Supernova rate

Conclusions

- Rotation plays a key role to determine the fate of single massive stars
- What is the contribution of single stars to the number of SNe lbc vs binary channel ?
- Key point: what happens to the SN when a BH is formed ?
- If all massive stars produce a SN, single star models should contributes significantly to the total number of SNe lbc. Moreover, the general trends with respect to *Z* are well reproduced.
- If the BH formation prevents a visible SN to appear, need of other channels, particularly at sub-solar metallicity.

SN type criterion Type of SN vs *M*_{ini} and *Z* Supernova rate

Final vs initial mass

Final vs initial mass

(Meynet & Maeder 2005)

Cyril Georgy Supernova progenitors