Ben Davies (RIT / Leeds) Don Figer (RIT) Rolf-Peter Kudritzki (UHawaii) Chryssa Kouveliotou (NASA/MSFC) Christine Trombley (RIT) Stefanie Wachter (IPAC) Maria Messineo (ESA-ESTEC)

# The Progenitors of Neutron Stars & Magnetars



#### Halpern & Gotthelf 2009 arXiv/0911.0093



#### Age of cluster -> mass of neutron star's progenitor



# **Observations of magnetars...**

| <b>Object [+ cluster]</b>          | M <sub>prog</sub> /M⊙       | Remnant         | B (x10 <sup>14</sup> G) |
|------------------------------------|-----------------------------|-----------------|-------------------------|
| SGR 1806-20                        | <b>48</b> +20 <sub>-8</sub> | Magnetar        | 2-8                     |
| CXO J164710.2-455216 [Wd 1]        | 40±5                        | Magnetar        | <1.5                    |
| CXOU J181335.1-174957 [Cl 1813-18] | 25±5                        | Pulsar Wind Neb | 0.03                    |
| AX J1838-0655 [RSGC1]              | 18±2                        | Pulsar Wind Neb | 0.02                    |
| SGR 1900+14                        | ???                         | Magnetar        | 2-8                     |

Davies et al 2009, ApJ 707, 844 (+ refs therein)

# magnetic fields of neutron stars some function of initial stellar mass..?

#### **Gaensler et al. (2005) :** (referencing Duncan & Thompson 1992; Heger et al. 2003)

M > 35M⊙

 $35M_{\odot} > M > 8M_{\odot}$ 

**O star - WR star - SN - magnetar** 

0 star - RSG (+) - SN - neutron star

# **Observations of magnetars...**

| Object [+ cluster]                               | M <sub>prog</sub> /M⊙       | Remnant         | B (x10 <sup>14</sup> G) |  |  |
|--------------------------------------------------|-----------------------------|-----------------|-------------------------|--|--|
| SGR 1806-20                                      | <b>48</b> +20 <sub>-8</sub> | Magnetar        | 2-8                     |  |  |
| CXO J164710.2-455216 [Wd 1]                      | <b>40±5</b>                 | Magnetar        | <1.5                    |  |  |
| IGR J18135-1751 [Cl 1813-18]                     | 25±5                        | Pulsar Wind Neb | 0.03                    |  |  |
| AX J1838-0655 [RSGC1]                            | 18±2                        | Pulsar Wind Neb | 0.02                    |  |  |
| SGR 1900+14                                      | (???)                       | Magnetar        | 2-8                     |  |  |
| Davies et al 2009, ApJ 707, 844 (+ refs therein) |                             |                 |                         |  |  |
| What about this bloke?                           |                             |                 |                         |  |  |
|                                                  |                             |                 |                         |  |  |
|                                                  |                             |                 |                         |  |  |



2MASS H-band (1.6µm)

8





#### Keck/NIRC2 (AO-assisted) H-band

Davies et al 2009, ApJ 707, 844















- RSG Luminosities
- Cluster age
- Mass of magnetar progenitor

#### Age of cluster → mass of neutron star's progenitor

#### Age of cluster → mass of neutron star's progenitor







| M <sub>prog</sub> /M⊙       | Remnant                                             | B (x10 <sup>14</sup> G)                                                                      |
|-----------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|
| <b>48</b> +20 <sub>-8</sub> | Magnetar                                            | 2-8                                                                                          |
| <b>40±5</b>                 | Magnetar                                            | <1.5                                                                                         |
| 25±5                        | Pulsar Wind Neb                                     | 0.03                                                                                         |
| 18±2                        | Pulsar Wind Neb                                     | 0.02                                                                                         |
| (17±2)                      | Magnetar                                            | 2-8                                                                                          |
|                             | Mprog/M.<br>48+20-8<br>40±5<br>25±5<br>18±2<br>17±2 | Mprog/MoRemnant48+20-8Magnetar40±5Magnetar25±5Pulsar Wind Neb18±2Pulsar Wind Neb17±2Magnetar |

Davies et al 2009, ApJ 707, 844 (+ refs therein)

### Other evidence for lower mass magnetar progenitors I: The G25 starburst region

RSGC2



• Region-wide starburst event ~15Myr ago.

**RSGC3** 

- No evidence for any star forming activity within last ~12Myr
- If magnetar is associated, implies initial mass of  ${<}18 M_{\odot}$
- Figer et al. 2006, ApJ 643, 1166

**RSGC4** 

RSGC1

- Davies et al. 2007, ApJ 671, 781
- Davies et al. 2008, ApJ 676, 1016
- Clark et al. 2009, A&A 504, 429
- Negueruela et al. 2010 A&A 513, 74

# Other evidence for lower mass magnetar progenitors II: The N49 region in the LMC (near SGR 0526-66).



- Little evidence for star-forming activity within last ~10Myr around N49.
- If magnetar is associated, implies initial mass of progenitor  ${<}20M_{\odot}$

The Progenitors of Neutron Stars and Magnetars -Conclusions: The Progenitors of Neutron Stars and Magnetars -Conclusions:

Neutron star progenitors

• Can use stellar clusters to estimate the masses of NS progenitors.

• NS B-field probably depends on more than just mass of the stellar progenitor.

• Binary/merger..?

The Progenitors of Neutron Stars and Magnetars -Conclusions:

Neutron star progenitors

Can use stellar clusters to estimate the masses of NS progenitors.

- NS B-field probably depends on more than just mass of the stellar progenitor.
- Binary/merger..?

Future:

- **'e:** All-plane survey for magnetars. How common are they? Birthrate similar to that of regular NSs?
  - Did SN1987A leave a magnetar?



# Origin of large magnetic fields..?



- Hot, newborn (<10sec) neutron star churns & mixes.
- Internal convection carries away heat.
- If birth period shorter than convective timescale (~1ms), super-efficient dynamo operates, boosting magnetic field.

#### (Duncan & Thompson 1992)

# **Origin of large magnetic fields..?**

# Requires neutron star to be born with a fast rotation period!



When star evolves to the RSG phase...

- Core contracts & spins up.
- Envelope expands & spins down.
- BUT: envelope and core magnetically coupled by convection zones...
- Core rotation is BRAKED.





When star evolves to the RSG phase...

• Results in a highly magnetized, slowly rotating neutron star



HOWEVER: very massive stars AVOID the RSG phase, and (possibly) associated core spin-down.



**Fossil Field mechanism:** 

 Magnetic field inherited from natal cloud.
 Extremely uncertain how a magnetic field evolves over star's lifetime.

#### Stellar merger:

- Sounds mad...
- ... but is favoured explanation for SN1987A.
- Requires a lot of fine-tuning.
- No evidence for similar pre-SN ejecta from SGR1900+14.

**Fossil Field mechanism:** 

 Magnetic field inherited from natal cloud.
 Extremely uncertain how a magnetic field evolves over star's lifetime.

Influence of binary companion:

- Companion can 'relieve' the primary of its envelope, allowing it to skip RSG phase.
- Could also spin-up star?
- "Free parameter heaven..."

**Fossil Field mechanism:** 

 Magnetic field inherited from natal cloud.
 Extremely uncertain how a magnetic field evolves over star's lifetime.

Influence of binary companion:

- Companion can 'relieve' the primary of its envelope, allowing it to skip RSG phase.
- Could also spin-up star?
- "Free parameter heaven..."

#### **Stellar merger:**

- Sounds mad...
- ... but is favoured explanation for SN1987A.
- Requires a lot of fine-tuning.
- No evidence for similar pre-SN ejecta from SGR1900+14.

**Fossil Field mechanism:** 

Influence of binary companion:

- Magnetic field inherited from natal cloud.
  Extremely uncertain how a magnetic field evolves over star's lifetime.
- Companion can 'relieve' the primary of its envelope, allowing it to skip RSG phase.
- Could also spin-up star?
- "Free parameter heaven..."



- Sounds mad...
  - ... but is favoured explanation for SN1987A.
- Requires a lot of fine-tuning.
- No evidence for similar pre-SN ejecta from SGR1900+14.

### Stellar mass + post-SN remnant

