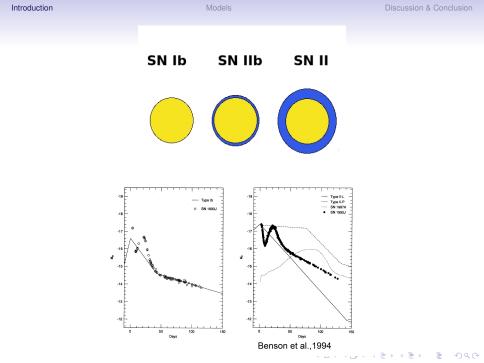
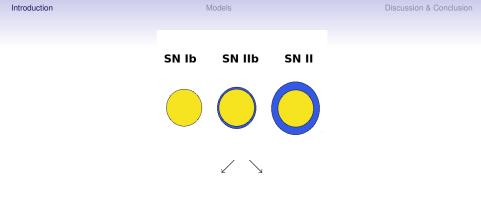

Binary progenitor models of type IIb Supernovae

J.S.W. Claeys, S.E. de Mink, O.R. Pols, M.Baes

XXVI IAP Annual Colloquium, Paris: 29/06/2010

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?


(日)


Binary progenitor models of type IIb Supernovae

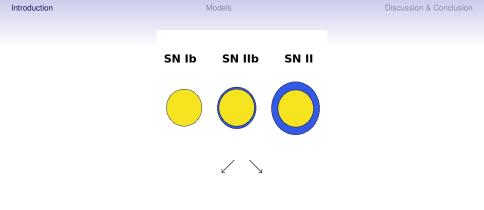
J.S.W. Claeys, S.E. de Mink, O.R. Pols, M.Baes

Which binaries? Companion star? Rate?

XXVI IAP Annual Colloquium, Paris: 29/06/2010

Compact:

- Wolf-Rayet star
- Hydrogen envelope $<0.1 M_{\odot}$
- Similar to type lb


Extended:

- Red supergiant
- Hydrogen envelope $> 0.1 M_{\odot}$

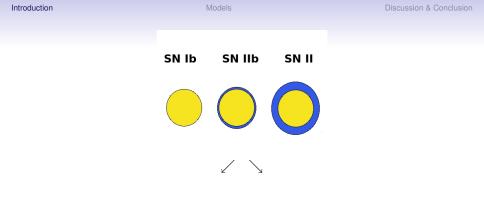
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \Rightarrow This talk

(Chevalier & Soderberg 2010)

Compact:

- Wolf-Rayet star
- Hydrogen envelope $<0.1 M_{\odot}$
- · Similar to type Ib



- Red supergiant
- Hydrogen envelope $> 0.1 M_{\odot}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

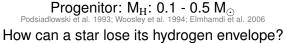
 \Rightarrow This talk

(Chevalier & Soderberg 2010)

Compact:

- Wolf-Rayet star
- Hydrogen envelope $<0.1 M_{\odot}$
- · Similar to type Ib

Extended:


- Red supergiant
- Hydrogen envelope $> 0.1 M_{\odot}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

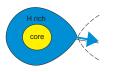
 \Rightarrow This talk

(Chevalier & Soderberg 2010)

Single vs. Binary channel

Single star channel

- Stellar wind
- Fine-tuning


· Binary star channel

- · Interaction with its companion
 - Podsiadlowski et al. 1992; Maund et al. 2004; Stancliffe & Eldridge 2009

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

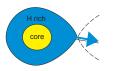
Dominant channel

Single vs. Binary channel

· Single star channel

- Stellar wind
- Fine-tuning

· Binary star channel

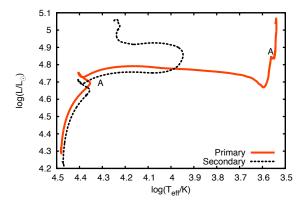

Interaction with its companion
 Padeiadlawski et al. 1992: Maund et al. 2004: Stappil

Podsiadlowski et al. 1992; Maund et al. 2004; Stancliffe & Eldridge 2009

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

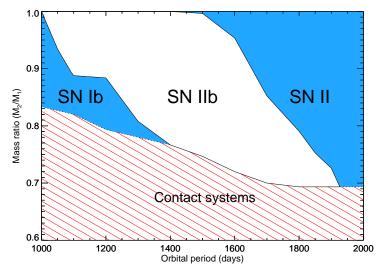
-

· Dominant channel



(ロ) (同) (三) (三) (三) (○) (○)

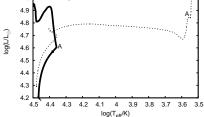
Which binaries produce type IIb SNe?


Example: progenitor system

Based on model: maund et al. (2004)

15+14.35 M_{\odot} , P_{orb} =1500 days

Calculations made with Eggleton's stellar evolution code

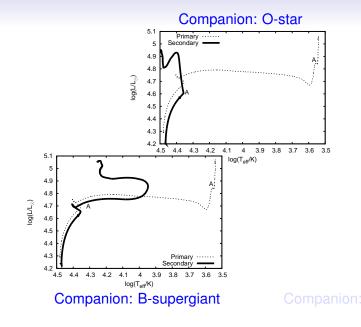


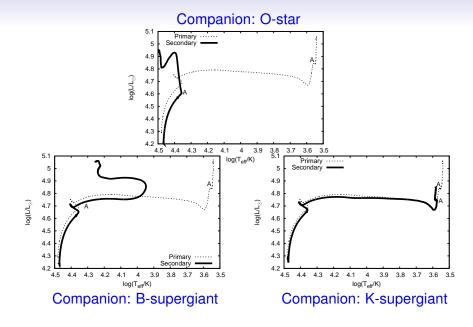
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What about the companions?

Companion: B-supergiant

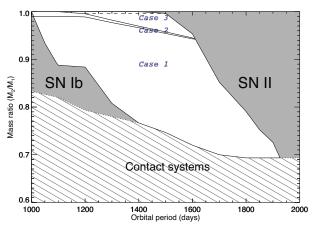

Companion: K-supergiant


æ

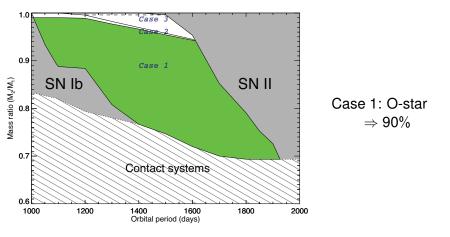
・ロト ・聞ト ・ヨト ・ヨト

・ロト ・ 四ト ・ ヨト ・ ヨト

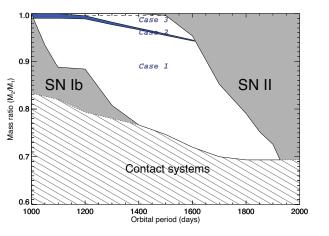
ъ



▲□▶ ▲圖▶ ▲ 国▶ ▲ 国 ● のQC


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

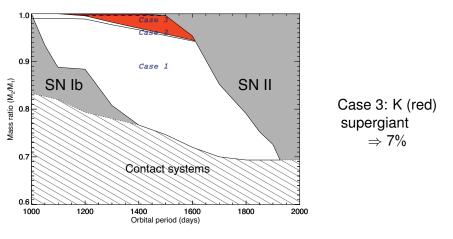
Evolution of the companion?


Discussion & Conclusion

Evolution of the companion?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Evolution of the companion?


Case 2: B (blue) supergiant $\Rightarrow 3\%$

> SN 1993J and SN 2001ig? Maund & Smartt 2009 Ryder et al. 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Evolution of the companion?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Can we explain the rate of IIb's?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The observed and predicted rate

- Observed rate: Extended IIb $\frac{\text{SNe IIb}}{\text{Core Collapse}} \approx 3\%$

Smartt et al. (2009), Van den Bergh et al. (2005), Li et al. (2007), Arcavi et al (2010)

Predicted rate (standard assumptions)

 $\frac{\text{SNe IIb}}{\text{Core Collapse}} \approx 0.6\%$

Close Binary fraction: 50%, flat initial mass ratio distribution, flat in log period

Incraese binary fraction:favour "Twin binaries":Non-conservative $\approx 1\%$ $\approx 1.35\%$ $\approx \times 1.6$

(日) (日) (日) (日) (日) (日) (日)

The observed and predicted rate

- Observed rate: Extended IIb $\frac{\text{SNe IIb}}{\text{Core Collapse}} \approx 3\%$

Smartt et al. (2009), Van den Bergh et al. (2005), Li et al. (2007), Arcavi et al (2010)

Predicted rate (standard assumptions)

$\tfrac{\text{SNe IIb}}{\text{Core Collapse}}\approx 0.6\%$

Close Binary fraction: 50%, flat initial mass ratio distribution, flat in log period

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The observed and predicted rate

- Observed rate: Extended IIb $\frac{\text{SNe IIb}}{\text{Core Collapse}} pprox 3\%$		
Smartt et al. (2009), Van den Bergh et al. (2005), Li et al. (2007), Arcavi et al (2010)		
 Predicted rate (standard assumptions) 		
$rac{ m SNe~IIb}{ m Core~Collapse}pprox 0.6\%$		
Close Binary fraction: 50%, flat initial mass ratio distribution, flat in log period		
Incraese binary fraction: $\approx 1\%$	favour "Twin binaries": \approx 1.35%	Non-conservative: $\approx \times 1.6$

(ロ) (同) (三) (三) (三) (三) (○) (○)

The observed and predicted rate

Observed rate: Extended IIb

Smartt et al. (2009), Van den Bergh et al. (2005), Li et al. (2007), Arcavi et al (2010)

Predicted rate (standard assumptions)

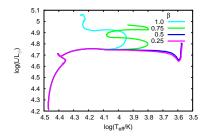
 $\tfrac{\text{SNe IIb}}{\text{Core Collapse}}\approx 0.6\%$

Close Binary fraction: 50%, flat initial mass ratio distribution, flat in log period

· In comparison: Single Stars

 $\frac{\text{SNe IIb}}{\text{Core Collapse}} \approx 0.3\%$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

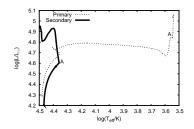

What can IIb's teach us?

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Accretion Efficiency

 Due to spin-up of accreting star → Binary system loses mass (Packet 1981)



 Decrease of binary systems evolving to SNe type IIb with companion a B-supergiant

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Internal mixing

- Companion of SN 1993J (and SN 2001ig) BSG:
 - \rightarrow Most rare scenario
 - <u>Schwarzschild Criterion</u>: accreting during <u>Main Sequence</u>: Companion: O-star

 <u>Ledoux criterion</u>: More companions evolve to B-supergiant (Braun & Langer (1995))

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

- Binary interaction can explain the characteritics of the observed SNe type IIb But:
 - Enough to explain the rate?
 - Room for other channel (e.g. talk: Cantiello)?
- 2. More accurate rate by upcoming automated surveys (e.g. PTF, Pan-STARRS,...)
- 3. Observations IIb SNe and their companions: learn about stellar and binary physics

Models

Discussion & Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thanks!