The Clustering of Ly α emitters in a Λ CDM Universe

Alvaro Orsi Cedric Lacey Carlton Baugh Leopoldo Infante

Institute for Computational Cosmology

The Lyman α Universe, Paris, July 6-10, 2009

Clustering of high redshift Ly α emitters

What can we learn from it?

- Spatial distribution of Ly α emitters
 - Are they distributed like other galaxies?
 - Where are they more likely to be found?
 - How are Ly α emitters tracing the underlying dark matter distribution?
- The mass of dark matter haloes hosting $Ly\alpha$ emitters
- Galaxy formation in the high redshift Universe
 - What ingredients do we need to reproduce the observed large scale structure of $Ly\alpha$ emitters?
 - How reliable are current measurements really? (cosmic variance)

Our model

We use the **GALFORM** semi analytical model described yesterday in Cedric's talk

- ▶ Baugh et al (2005); Le Delliou et al (2005,2006); Lacey et al (2008)
- Kennicut IMF for quiescent galaxies
- Top-heavy IMF for starbursts (boost 5x the number of ionizing photons)
- Superwinds suppress the formation of bright galaxies
- LyC photons + Case B recombination \Rightarrow Ly α photons
- A fixed escape fraction $f_{esc} = 0.02$ is assumed \Rightarrow to fit observed LF at $z \sim 3 - 6$

Beyond Ly α emitters

- Observed number counts and redshift distribution of sub-millimetre sources
- Luminosity function of Lyman-break galaxies
- Galaxy evolution in the IR

Our model

• We combine it with the Millennium Simulation (Springel et al.(2005))

- Box size: 500[Mpc/h] each side.
- $M_{halo} \ge 1.72 \times 10^{10} M_{\odot} h^{-1}$

 \implies Spatial information

Planting galaxies in the Millennium simulation

 \Rightarrow

N-body haloes Mass, positions and

velocities are recorded

Run GALFORM

Population of galaxies associated with each halo mass Galaxies are planted

Central galaxies goes to centre of mass, satellites to randomly selected particles of the halo.

 \Rightarrow

Dark matter at z = 2

Ly α -emitters at z = 2

H-band selected sample

Ly α -emitters at z = 3.3

The two point correlation function of Ly α emitters

• Deviation from a random distribution:

$$\delta P = n^2 dV_1 dV_2 (1 + \xi(r_{12}))$$

- We study ξ(r) over the redshift interval 0 < z < 9.
- ξ_{gal} behaves like a power law over a wide range in pair separation.
- ξ_{gal} = b²ξ_{dm},,
 b : effective galaxy bias.
- ξ_{dm} and ξ_{gal} evolve different with redshift:

Effective bias

- Strong evolution of *b* with redshift
- Weak dependence on $Ly\alpha$ luminosity.
- ۰ Analytic model (dashed lines) approximately reproduces the bias of Ly α emitters for z < 5
- Simulation gives more accurate ۰ predictions

Correlation length

• ξ_{gal} is a power law (1 < r < 10 $h^{-1}Mpc$)

$$\xi(r) = \left(\frac{r}{r_0}\right)^{-\gamma}$$

- r_0 : Correlation length \rightarrow Amplitude
- At bright luminosities, *r*₀ evolves with redshift
- Not simple relation between r_0 and M_{halo}
- median $M_{\text{halo}} \leq 10^{12} M_{\odot} h^{-1}$ for $\text{Ly}\alpha$ emitters

- Narrow band surveys can be easily simulated to compare them directly with our simulations
- Measure cosmic variance affecting a given survey
- Help designing future experimets

- Extract a catalogue of galaxies of a given redshift
- Filter transmission curve \rightarrow redshift range, flux and EW limits
- Replicate the angular geometry of the real survey
- Degrade to match completeness of the observed sample
- Extract as many mock catalogues as possible from the simulation box

- Extract a catalogue of galaxies of a given redshift
- Filter transmission curve \rightarrow redshift range, flux and EW limits
- Replicate the angular geometry of the real survey
- Degrade to match completeness of the observed sample
- Extract as many mock catalogues as possible from the simulation box

- Extract a catalogue of galaxies of a given redshift
- Filter transmission curve \rightarrow redshift range, flux and EW limits
- Replicate the angular geometry of the real survey
- Degrade to match completeness of the observed sample
- Extract as many mock catalogues as possible from the simulation box

- Extract a catalogue of galaxies of a given redshift
- Filter transmission curve \rightarrow redshift range, flux and EW limits
- Replicate the angular geometry of the real survey
- Degrade to match completeness of the observed sample
- Extract as many mock catalogues as possible from the simulation box

- Extract a catalogue of galaxies of a given redshift
- Filter transmission curve \rightarrow redshift range, flux and EW limits
- Replicate the angular geometry of the real survey
- Degrade to match completeness of the observed sample
- Extract as many mock catalogues as possible from the simulation box

Measuring clustering

- Narrow band surveys have no 3D information
- angular (projected) correlation function $w(\theta)$ instead

$$w(\theta) = A_w \left(\frac{\theta}{1^{\prime}}\right)^{-\delta}$$

$$w_{LS}(\theta)\rangle = w(\theta) - w_{\Omega}$$

 $w_{\Omega} = \frac{1}{\Omega^2} \int d\Omega_1 d\Omega_2 w(\theta_{12})$

• w_{Ω} : Integral Constraint

Cosmic variance

- For each survey $\sim 100 \text{ mock}$ catalogues
 - \Rightarrow Spread in $w(\theta)$

Measuring clustering

- Narrow band surveys have no 3D information
- angular (projected) correlation function $w(\theta)$ instead

<

$$w(\theta) = A_w \left(\frac{\theta}{1'}\right)^{-\delta}$$

$$\langle w_{LS}(\theta) \rangle = w(\theta) - w_{\Omega}$$

 $w_{\Omega} = \frac{1}{\Omega^2} \int d\Omega_1 d\Omega_2 w(\theta_{12})$

• w_{Ω} : Integral Constraint

Cosmic variance

• For each survey $\sim 100 \text{ mock}$ catalogues

 \Rightarrow Spread in $w(\theta)$

Clustering of Ly α emitters

A. Orsi

ICC

Clustering of Ly α emitters

A. Orsi

ICC

Clustering of Ly α emitters A

A. Orsi

ICC

Median ξ_{gal} of mocks

Median ξ_{gal} of mocks Idealised survey over much larger solid angle \Rightarrow median of mocks recover the clustering, but huge scatter between mocks!

SXDS: Ly α emitters at 3 < z < 6 (Ouchi et al. in prep.)

Median ξ_{gal} of mocks Idealised survey over much larger solid angle \Rightarrow median of mocks recover the clustering, but huge scatter between mocks! Obervational ξ_{gal} \Rightarrow agrees at 95% confidence

MUSYC Survey, z = 3.1

MUSYC Survey, z = 3.1

ELVIS, a future survey of Ly α emitters with VISTA at z = 8.8 (*Nilsson et al.* (2007))

\implies Rough constraint on abundance of galaxies but no useful on clustering

Clustering of Ly α emitters

A. Orsi

ELVIS, a future survey of Ly α emitters with VISTA at z = 8.8 (*Nilsson et al.* (2007))

 \implies Rough constraint on abundance of galaxies but no useful on clustering

Ly α -emitters vs. H-band selected sample

- Ly α emitters avoid the cores of clusters
- H-band selected galaxies trace massive structures

Ly α -emitters vs. H-band selected sample

- Ly α emitters avoid the cores of clusters
- H-band selected galaxies trace massive structures

Clustering of Ly α -emitters vs. H-band galaxies

 Real space: Clustering of *H_{AB}* galaxies is stronger than Lyα-emitters

• Redshift space:

- Small scales: signal declines due to random velocities
- Large scales: boost in clustering due to infalling velocities

Clustering of Ly α -emitters vs. H-band galaxies

- Real space: Clustering of *H_{AB}* galaxies is stronger than Lyα-emitters
- Redshift space:
 - Small scales: signal declines due to random velocities
 - Large scales: boost in clustering due to infalling velocities

Two dimensional correlation function: $\xi(\sigma, \pi)$

Real space: Concentric circles

Two dimensional correlation function: $\xi(\sigma, \pi)$

Redshift space: Fingers of god, infalling velocities

Clustering of $Ly\alpha$ emitters A. Orsi

Two dimensional correlation function: $\xi(\sigma, \pi)$

Redshift space + uncertainties in redshift (HETDEX)

 $\Rightarrow \sigma_z = 10^{-4}$ has no significant effect on $\xi(\sigma, \pi)$

Clustering of Ly α emitters A. Orsi

Two dimensional correlation function: $\xi(\sigma, \pi)$

A magnitude limited sample in redshift space: Prominent fingers of god!

 \Rightarrow Difficult to model linear redshift distorsions

Clustering of Ly α emitters A. Orsi

Conclusions

Evolution of the clustering of Ly α -emitters

- The clustering strength and bias depends strongly on redshift.
- Ly α -emitters avoid the cores of clusters
- Their clustering is weaker than what is found in a magnitude limited sample

Conclusions

Mock catalogues of narrow band surveys

- Observed number of galaxies agrees well with our predictions
- Clustering amplitude agrees well with mocks
- Current surveys have very large sample variance
 - \Rightarrow larger samples are needed