WSO-UV: THE NEXT SPACE TELESCOPE FOR ULTRAVIOLET ASTRONOMY

Ana Inés Gómez de Castro (UCM), Boris Shustov (INASAN), Klaus Werner (IAAT), Gang Zhao, Jesús Maíz (IAA), Armando Gil de Paz (UCM), Mikhail Sachkov (INASAN), Norbert Kappelmann (IAAT), Maohai Huang

INDEX:

I. Why an ultraviolet telescope?

II. The WSO-UV telescope

III. WSO-UV versus HST capabilities

IV. WSO-UV and the Lyman-a Universe

IIIIV I. Why an UV telescope?

- Richness of experimental data for the study of *plasma with temperatures in between 3,000K and 300,000K*.
 - unmatched by any other domain
- *Electronic transitions of the most abundant molecules*, observed in this range
 - E.g. H₂, OH, or CO: also the most sensitive to the presence of large molecules such as the PAHs.
- Most sensitive spectral tracers to *diffuse baryonic matter*
 - HI Ly α in the nearby Universe and HeII Ly α at 2<z<9
 - Lyα 0<z<1.8 ... about 80% of the Universe life</p>

IIIIV I. Why to trace IIIIV ...the Universe Evolution?

COSMIC TIME LINE

UV astronomy is Space astronomy

Z=0-1.5 Major epoch of galaxy assembly and metal production

Galactic winds enrich the IGM

Numerical simulations show that IGM gas is distributed:

- 1. Warm photoionized gas (10^4 K)
- 2. Warm/hot shocked gas (10^{5-7} K)
- 3. Collapsed halos, galaxies, and clusters (T $> 10^7$ K).

UV lines are 500-1000 times more sensitive than their x-ray counterparts.

Numerical simulations of the galactic fountain D'Avillez et al 2008

Telescope: T-170M, Russia 1.7 m diameter, primary λ range 110 - 340 nm,

Instruments:

HIRDES: UVES, VUVES, R \approx 5-6 x 10⁴; Germany LSS, R \approx 2500, China and cooperation (UK,G,Uk,Ru) ISSIS, 2 imagers Spain

Platform: "Navigator", Russia

Orbit: geosynchronous one, i=51.8°

Launcher, launch: "ZENIT SB", Russia

Ground Segment: Russia, Spain – shared mission and science operations (50%-50%)

T-170 assembly room

Primary mirror mock-up

Telescope T-170M is being designed/manufactured in the Lavochkin Association (Russia)

Ritchey-Chretien F/10 with corrected field of view 0.5°

Coating optimized for the primary wavelength range: 100-350 nm

Assembly of the engineering mock-up of the Secondary Mirror Unit (SMU) of the T-170 Telescope in the «Voskhod» Science and Technology Center(Izhevsk, Russia)

ISAS INSTITUTE FOR ANALYTICAL SCIENCES

HIgh Resolution Double Echelle Spectrograph (HIRDES)

Heritage:

ORFEUS flown on the Space Shuttle on two space shuttle flights in 1993 and 1996 (Barnstedt et al. 1999, Richter et al. 1999).

Parameter	Baseline Requirements	
Wavelength coverage		
UV Spectrograph	174-310 nm	
VUV Spectrograph	102-176 nm	
Spectral Resolution	> 48000	
Simultaneous coverage	As far as possible	
Minimum sensitivity		
• SNR= 10 in 10 h	16 mag (VUVES); 18 (UVES)	
• SNR= 100 in 10 h	11 mag (VUVES); 13 (UVES)	
Detectors	MCPs	
Limit loads in all axes w/o SF	15 g (tbc)	
Stiffness (first fundamental eigenfrequency)	> 40 Hz (tbc)	
Operational temperature	20 °C +/- 1°C (tbc)	
Transmission	> 60 % (300 nm) -tbc	
	> 30 % (100 nm) -tbc	
Envelope	1080 x 920 x 670 mm ³	
Mass	155 kg - tbd	
Power	150 W – tbd	
Data Rate (raw data/downlink)	Tbd / 1.6 Mbit/sec	

Long Slit Spectrograph (LSS)

NAOC	や日外を沈回家天文会 NATIONAL ASTRONOMICAL OBSERVATORIES CHINEFE A CARDING OF SPENDER
NAOC	NATIONAL ASTRONOMICAL OBSERVATORIES CHINESE ACADEMY OF SCIENCES

* *	University of
()	Leicester

Parameter	Requirements
Wavelength coverage – FUV channel – NUV channel	102~190 nm (1 or 2 subchannels) 190~320 nm
Width of slit	$1^{\prime\prime} \approx 82 \ \mu m$
Length of slit	75″ ≈ 6.2 mm
Spectral resolution	1500~2500
Spatial resolution	0.5"~1"
Detectors	MCPs

ISSIS:

Imaging and Slitless Spectroscopy Instrument

	HSC	CfS
Spectral Range	1200-2000Å	1200-6000Å
Spatial Resolution	0,1", TBC (T-170M limited)	0,1", TBC (T-170M limited)
Spatial Sampling	0,05 arcsec	0,05 arcsec
Field of View	>2,1 arcmin	>3,4 arcmin
Temporal Resolution	40ms	60s
Detector Type	CsI MCP	Full-frame CCD
Detector Format	>2048x2048 px (TBC)	4096x4096 px
Spectral Filters	10 (TBC)	10 (TBC)
Slitless Spectroscopy	Yes, R~300	Yes, R~300
Coronagraphy	No (TBC)	Yes (TBC)

ISSIS Basic Configuration (4/4)

WSO/UV orbit circular with radius 35800 km, i=51.8° a variant of geosynchronous orbit

lower UV background than HST

GROUND SEGMENT:

•Ground Station Control Center (GSCC) and Ground Communications Subnet (uplink/downlink): Russia & Spain. **22-24 hours coverage.**

•Mission Operations Center (MOC), real-time spacecraft monitoring and control function (also includes flight dynamics). Prompt response to TTOs

•Science Operations Center (SOC), scheduling and supervision of the WSO scientific operations. Also includes calibration, processing and verification of scientific data.

•Science Data Processing Center (SDPC) – or pipeline - provides end users both mission products and associated data required for their Utilization.

•Science Archive – VO compliant

International Partnership

RUSSIA

WSO-UV (also local name Spectrum-UV is used) Project is considered by Roscosmos and by the RAS as one of the key projects in space science program. The project is included in the Federal Space Program of Russia for 2006-2015.

Contribution: Launcher & Launch, Spacecraft, Telescope, Ground Segment

PI: Boris Shustov /INASAN - Contractor: Lavochkin

GERMANY

DLR is waiting for progress with other instruments. HIRDES Phase B1 is successfully completed in 2006 (Instrument Interface Control Document - by Kayser-Threde Co.).

Contribution: HIRDES

PI: Klaus Werner/IAAT – Contractor: Kayser-Threde

International Partnership

SPAIN

Agreement signed between CDTI and ROSCOSMOS (March 19th, 2007). CDTI has compromised to co-fund the development of the whole Ground Segment/MOC/SOC. Phase B of the GS is planned to be finished in 2009.

July 2009, Agreement Spain-Russia for ISSIS instrument close to completion.

Contribution: Ground Segment (MOC&SOC)+ISSIS

P.I.: Ana I. Gómez de Castro/UCM

CHINA

CNSA and CAS decided to participate in LSS (as responsible partner for the LSS) and consider participation in GS. Phase A/B1 of the LSS is planned to be finished in October 2007.

Contribution: LSS P.I.: Gang Zhao

Time sharing policy

Core Program (CP): Fundamental science to be carried by the project team **Funding Bodies Program (FBP)**: Guaranteed Time to the countries funding the project

Open Program (OP): Open program to the world wide scientific community

The core program - II

- Galaxy formation: determination of the distribution of diffuse baryonic matter in the Universe (up to z=2-3), its physical properties and its chemical composition.
- 2. The Milky Way formation and evolution
- Evolution of astrophysical disks to understand the role of the "disk-source of gravity" interaction in driving the observed outflows and to understand the evolution of disks when they become passive (specially in protoplanetary systems)
- 4. Atmospheres of extrasolar planets and astrochemistry in strong UV fields

The core program - II

MANAGEMENT OF THE CORE PROGRAM

- 1. A kick-off conference in May-June 2010 in St. Petersbourg.
- 2. Set-up of international consortia for the CP among the project members
- 3. Preparation of proposals for the core program deadline Sept-Oct 2011
- Selection of the best proposals beginning 2012

III III III. WSO-UV versus HST

ISSIS/HSC vs. HST/ACS/SBC Similar sensitivity

Similar filters set-up Field of view: 16 times larger Spatial resolution: 0.05 arcsec Dispersors: Grating/Prism/Grism under evaluation

III IV III. WSO-UV versus HST

HIRDES-UVES HIRDES-VUVES Res.:50,000- Range:175-310nm Res.:55,000- Range:103-176nm

Comparison Aeff HIRDES – HST/STIS

 $\lambda/\Delta\lambda = 50,000$ HIRDES $\lambda/\Delta\lambda = 37,000$ STIS

IV. WSO-UV & the Lya Universe **HIRDES:** Absorbers (including LAA) the highest sensitivity in 1900-2300A range **LSS:** Populations of extragalactic HII regions (R~2000) **ISSIS:** Lyman α Emitters (LAEs) – R~300 ACS/SBC sensitivity with a 16 times larger field

WSO - UV

III IV. WSO-UV & Lya Universe: Emitters

A survey for LAEs to study:

➢ Intermediate-redshift analogs to Lyman-Break Galaxies
➢ The evolution of the SFR density in the critical range: z=1-0
➢ The evolution of the Lyα emitters from redshift z=1-0
➢ To improve the photometric-redshift determination

Ly α imaging of nearby galaxies to undertand Ly α photons propagation in the hosting galaxies and the circungalactic medium

IIIIIV IV. WSO-UV & Lya Universe: Emitters

Number densities:Assuming a non-evolving LF from z=3 to z=1 (see Ouchi et al. 2008 for the range z=3-5) and a factor of 1/10 evolution in the number density (L>L*) from z=1 to z=0:

III IV. WSO-UV & Lya Universe: Emitters

IIIIV IV. WSO-UV & Lya Universe: Emitters

Limiting magnitudes in imaging mode:

Spiral @ $z=0.1 \rightarrow I=26.1$ (3σ in F150LP*@HSC) in 1h Spiral @ $z=0.3 \rightarrow I=25.5$ (3σ in F150LP*@HSC) in 1h Spiral @ $z=0.5 \rightarrow I=24.2$ (3σ in F150LP*@HSC) in 1h

Spiral @ $z=0.5 \rightarrow I=25.3$ (3σ in F250W*@CfS) in 1h Spiral @ $z=0.7 \rightarrow I=25.8$ (3σ in F250W*@CfS) in 1h Spiral @ $z=1.0 \rightarrow I=26.2$ (3σ in F250W*@CfS) in 1h

* The filters used for the simulation are analogous to those of the instrument ACS on board HST.

IIIIV. WSO-UV & Lya Universe:IIIIEmitters

COSMOS SkyWalker (V4.0)

To cover the COSMOS survey with ISSIS:

Imaging: 8.4 days (200 pointings)

Spectroscopy: 17 days (200 pointings)

Above is a tiny representation of the full 2 square degree HST ACS COSMOS field. Drag the small orange viewing glass above (left mouse) to any position, or directly pan around (left mouse) in the zoom region to the right.

Set zoom scale: <u>1.0 | 0.25 | 0.10</u> arcsec/pixel (coordinates on/off)

Scale: 0.25 arcsec/pixel Diameter: 180 arcsec

COSMOS For further information on the COSMOS Cosmic Evolution Survey visit the COSMOS

project page.

Programming: <u>Kanal jointes</u>, image data: <u>Anian Kaekemee</u>, The COSMOS Skywalker is based on the GarAs <u>Skywalker</u> by K. Johnke and <u>k. Skincher</u>. © 2006, Knud Johnke/COSMOS

Keep updated through: www.wso-uv.net

(also wso.inasan.ru, www.wso-uv.es)

