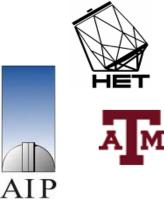


Ly- α emitters from the Hobby-Eberly Telescope Dark Energy Experiment

Gary J. Hill, McDonald Observatory (on behalf of the HETDEX Consortium)



HETDEX collaboration

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Astronomy 1 University Station, C1400 • Austin, Texas 78712-0259

Josh Adams Guillermo Blanc Mark Cornell Taylor Chonis Karl Gebhardt (PS) Lei Hao Gary Hill (Pl) Donghui Joeng Eiichiro Komatsu Hanshin Lee Phillip MacQueen Jeremy Murphy Marc Rafal (PM)

MPE/USM:

Ralf Bender Niv Drory Ulrich Hopp Ralf Koehler Helena Relke Jochen Weller

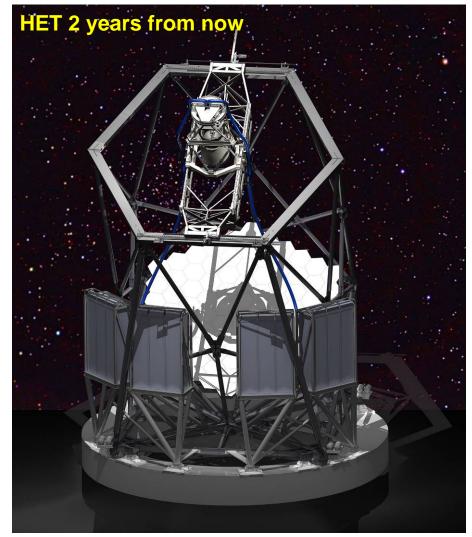
Texas A&M:

Darren DePoy Steven Finkelstein Jennifer Marshall Nicolas Suntzeff

Penn State University: Robin Ciardullo

Caryl Gronwall Larry Ramsey Don Schneider

AIP:


Andreas Kelz Volker Mueller Martin Roth Mathias Steinmetz Christian Wagner Lutz Wisotzki

Ly-α Universe Paris July 2009 Hobby-Eberly Telescope Dark Energy Experiment

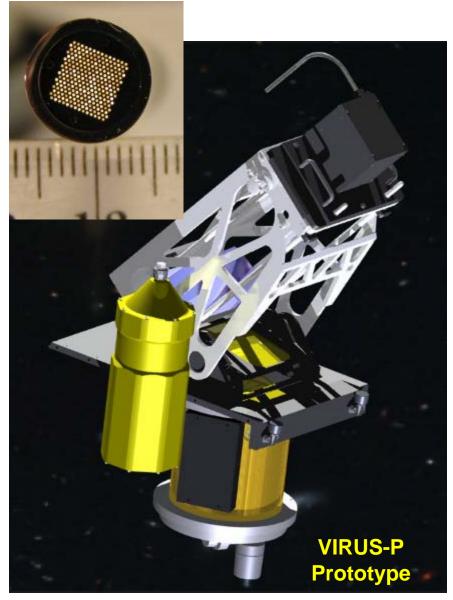
- HETDEX is:
 - Wide Field Upgrade of HET to have
 22- arcmin diameter field
 - Deployment of the hugely replicated IF spectrograph, VIRUS
 - Execution of a huge blind spectroscopic survey containing 0.8M LAEs with 1.9 < z < 3.5
 - Aim to constrain the evolution of dark energy via the power spectrum of LAEs
 - Realizes promise of HET as a premier survey facility
- HETDEX has been in development since 2007
 - First light for wide field upgrade projected for mid 2011
 - First observations in Fall 2011

7/10/2009

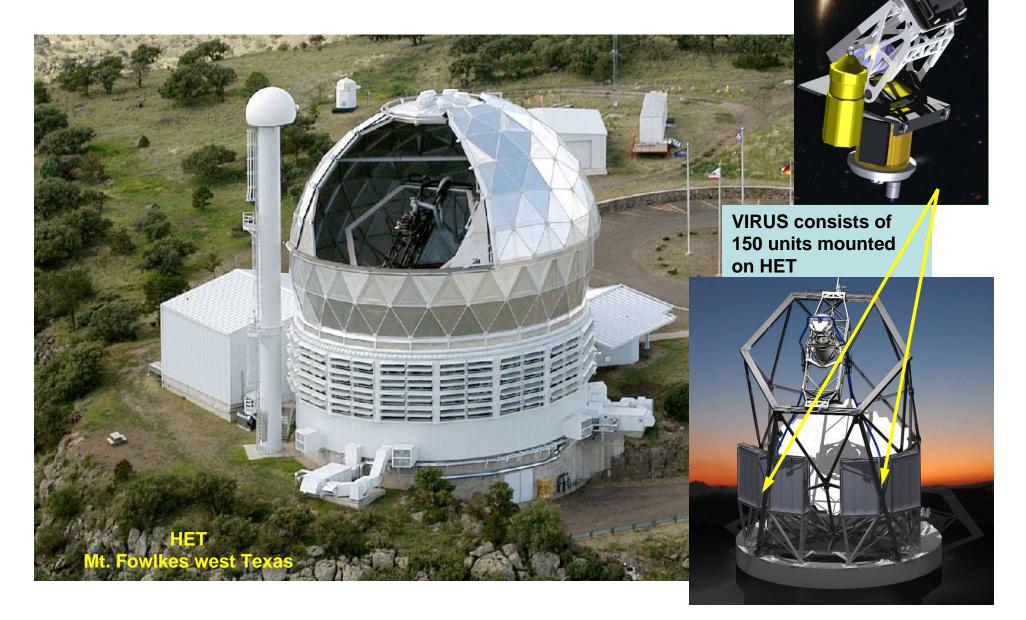
HETDEX Overview

- Two observational approaches to make progress on DE
 - Get the tightest possible constraints at low redshift where effect of DE is stronger
 - Go to higher redshift where we can measure the evolution
 - Both approaches are needed
- Almost all projects are focused at z<1.5
 - Due to observational constraints
- Aims of HETDEX
 - Measure the expansion rate to percent accuracy at z>2
 - Provide a direct constraint on the density of DE at z>2
 - Provide the best measure of curvature
- Tracers are Ly- α emitting galaxies
 - Numerous, easily detected with integral field spectrograph

- Blind survey with 150 integral field spectrographs, known as VIRUS
 - 33,600 spectra per exposure
 - 350 550 nm
 - Line flux limit 3.5e-17 and $m_{AB} \sim 22$
- 420 sq. deg. area survey will contain spectroscopy of:
 - 0.8 million LAEs in 9 cubic Gpc volume 1.9 < z < 3.5
 - 1 million [OII] emitters z < 0.48
 - 0.4 million other galaxies
 - 0.25 million stars
 - 2000 galaxy clusters
 - 7000 QSOs z < 3.5</p>
 - 20,000 NVSS radio sources
- VIRUS is very complementary to MUSE
- VIRUS is also superb for
 - Tracing DM in galaxies
 - Identifying sub-mm galaxies
 - Surveying for gravitationally lensed LAEs



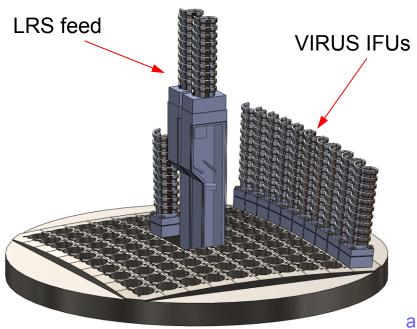
VIRUS

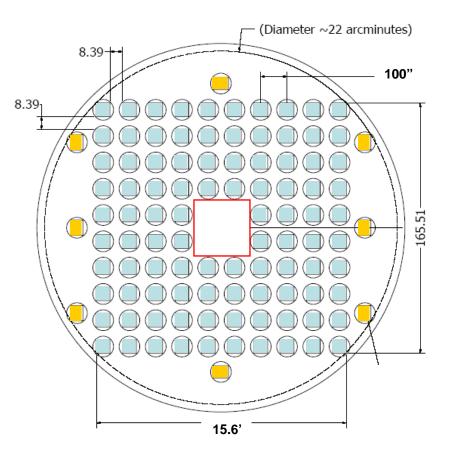

- Replicated integral field spectrographs (VIRUS)
 - Inexpensive fiber-fed unit IFS copied 150 times; deployed as 75 pairs
 - Each pair fed by 50x50 arcsec² IFU with 448 fibers of 1.5" diameter
 - 33,600 spectra per exposure
 - Three exposures fill area of IFU and observe 54 sq. arcmin total area
 - 350-550 nm coverage, R~700
- VIRUS prototype deployed in 2006

VIRUS on HET

Ly-α Universe Paris July 2009 VIRUS Integral Field Unit

- Bundles of fibers totaling 33,600 enable the weight of VIRUS to be mounted low
 - Each IFU is a bundle of 448 fibers split into two slits to feed a spectrograph pair
 - Simple design maximizes throughput and minimizes cost
- Development in collaboration with AIP
 - nine already delivered





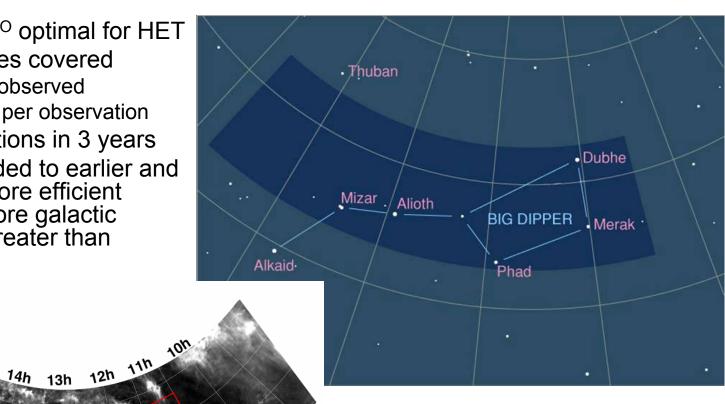
VIRUS field layout

- Grid layout of IFUs with ¼ fill factor
 - feeds for other instruments at the middle of the field
 - Allows parallel observations with VIRUS
- Baseline 75 IFUs will leave some gaps, but goal is to fill the matrix

Ly-α Universe Paris July 2009

Survey Areas & Supporting Data

- HET is most efficient observing in the north
 - Primary 420 sq. degree Spring survey area will be located in north galactic cap
 - Fill-factor of observed area within this field will be 1/7, so 60 sq. deg.
 Observed in total
 - Will cover this area with a survey in g,r with the WIYN ODI to AB~25.5 to provide continuum observations
- A second equatorial Fall field will provide overlap with surveys in other wavebands and will provide access from southern hemisphere telescopes
 - Most likely field is XMM-LSS
 - 60 sq. deg. area of low extinction
 - Expect to cover some part of this area more densely
 - Will start observing in Fall 2011 to provide a first rapid survey for early characterization and science results
 - Overlap with Spitzer Warm surveys and coverage from KMOS on VLT will be particularly interesting for characterizing the LAE population


Main Survey on sky

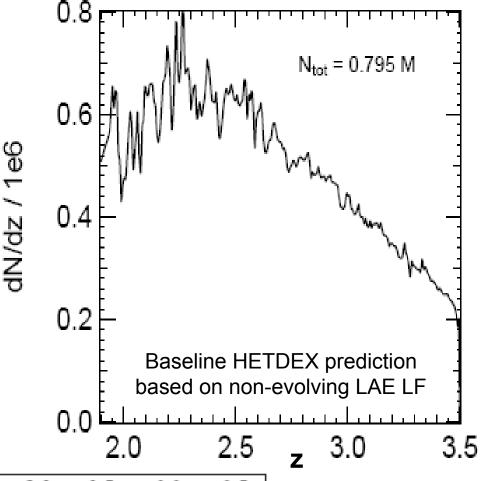
- Dec δ = 53-63^o optimal for HET ٠
- 420 sq. degrees covered •

164

- 60 sq. deg observed
- 20 minutes per observation
- 4000 observations in 3 years ٠
- Can be extended to earlier and • later RA for more efficient observing before galactic extinction is greater than $A_{\rm U}=0.1$ mag

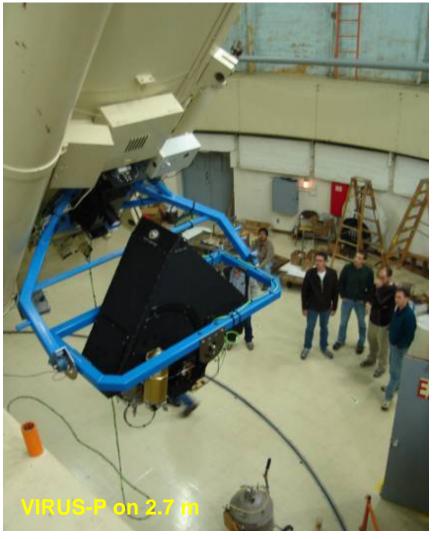
Reddening map with baseline survey limits

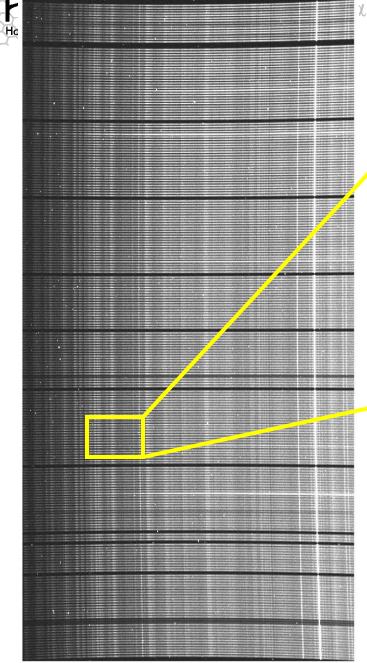
SS.



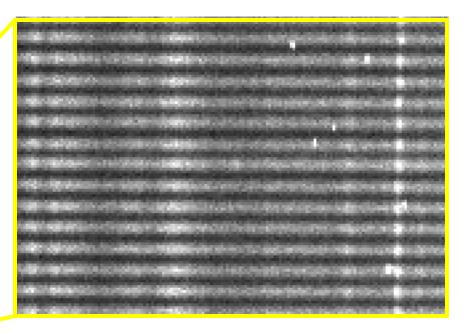
Expected content of the survey

- Main aim is a large sample of LAEs and other line emitting galaxies
 - 0.8M LAEs (1.9 < z < 3.5), 1M
 [OII] emitters (0 < z < 0.5)
 - Discriminated to 10% level with an equivalent width cut via a wide field imaging survey with WIYN ODI
- Blind spectroscopy will cover a wide range of interesting objects
 - AGN, clusters, metal-poor stars

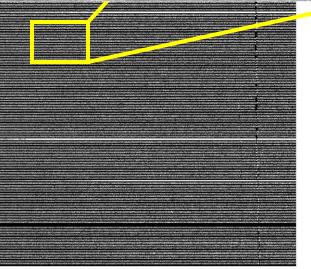

Redshift	1.9	2.5	3.0	3.5
Wavelength (nm)	350	425	485	550
Line Sensitivity (10 ⁻¹⁷ erg/cm ² /s) for 0.8M galaxies	9.5	3.9	3.4	3.5
Continuum Sensitivity of baseline (AB mag)	21.5	22.0	21.9	21.6



HETDEX Pilot Survey

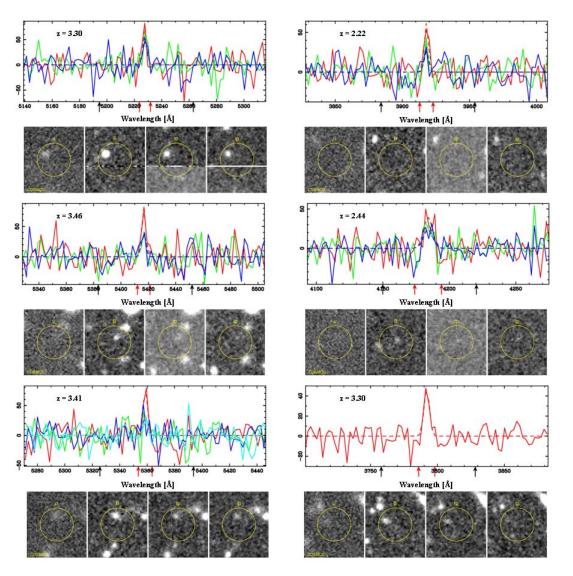

- Pilot survey using VIRUS-P
 - Demonstrate method and detection limits
 - Develop software
 - Measure LAE evolution and bias
- VIRUS-P prototype unit IFS on McDonald 2.7 m
 - Fed at f/3.65 (4.1 " dia fibers)
 - 3.4 sq. arcmin coverage
 - 340 580 nm coverage R~800
 - 1.8 < z < 3.8 for Ly- α
- COSMOS, GOODS-N, XMM-LSS, and MUNICS-S2 fields
 - Fields selected to have deep multi-wavelength broad-band imaging
- 200 arcmin² surveyed in 2 years
 - expect ~150 LAEs in final catalog
 - 1.3x10⁶ cubic Mpc comoving volume
 - 6 hours observation time per field
 - $6x10^{17}$ erg/cm²/s 5- σ line flux limit

Universe Paris July 2009 Example Data



- 6 position dither pattern ensures good field coverage
- Three 20 min exposures at each position
- 2 hr of effective exposure time

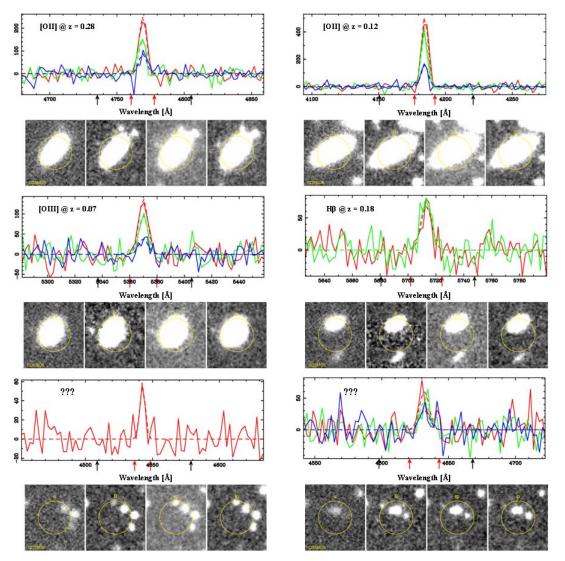
1 Universe Paris July 2009Example Data



- VIRUS data reduced with two independent pipelines
- VACCINE (U. Texas) and CURE (USM/MPE Munich)
- 5σ flux limit of ~6x10⁻¹⁷ erg/s/cm² for a point-source and unresolved line

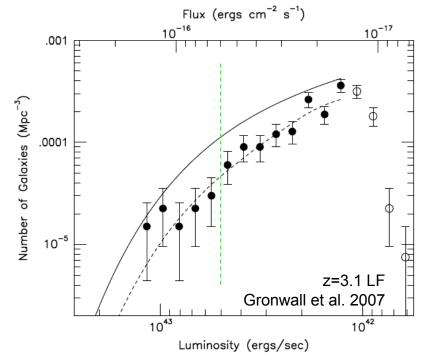
McDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

Ly- α Emitters

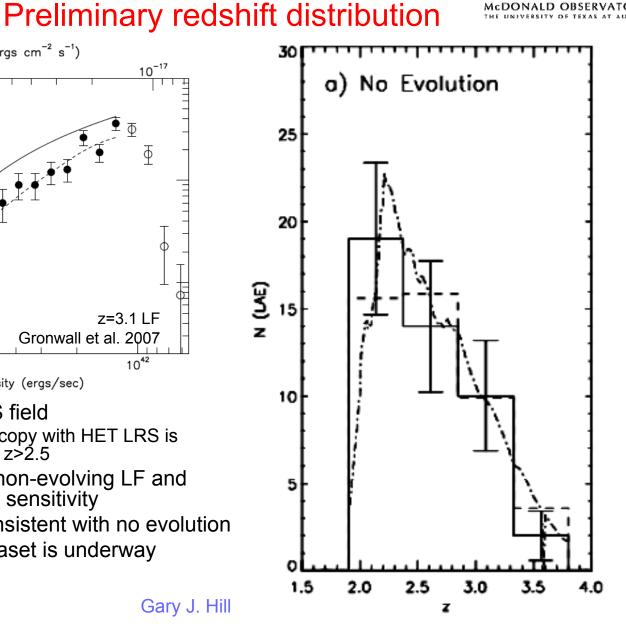

.

7/10/2009

Low redshift and unclassified objects


÷

7/10/2009

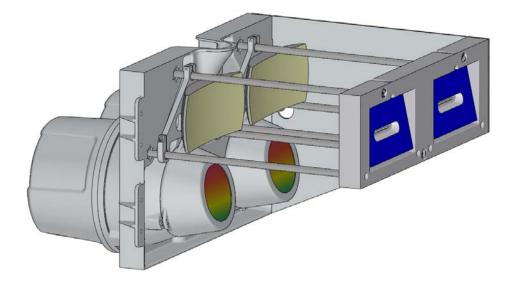


Ly- α Universe Paris July 2009

McDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN

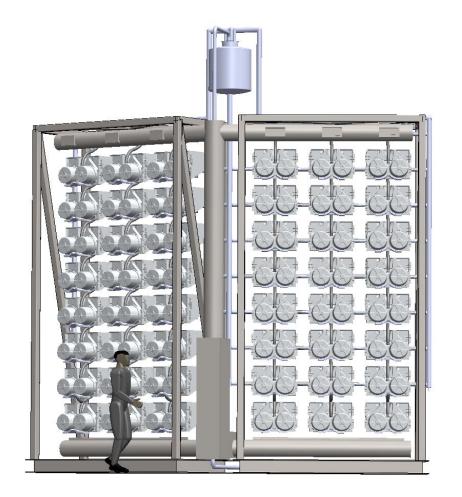
- 45 LAEs in COSMOS field
 - Follow-up spectroscopy with HET LRS is confirming those at z>2.5
- Prediction based on non-evolving LF and ٠ measured instrument sensitivity
- Preliminary result consistent with no evolution ٠
- Reanalysis of full dataset is underway •

7/10/2009


Gary J. Hill

VIRUS Production design

- McDONALD OBSERVATORY THE UNIVERSITY OF TEXAS AT AUSTIN
- Production design is complete and we are manufacturing several copies of the production prototype
- Detector system contract will be awarded soon
- Design makes extensive use of castings in both the collimator and camera
- We expect small modifications before full production, based on experience with the production prototypes


VIRUS grating cell blanks

Summary

- The HETDEX project will produce the largest catalog of 0.8M LAEs and another million line emitting objects over a huge volume of space (9 cubic Gpc)
- In addition to providing constraints on dark energy through the LAE power spectrum, the catalog will be *the* source for putting LAEs and other objects in the context of large-scale structure at z~2-4
- It will provide the first large-scale 3-D view of the high redshift cosmic web
- The survey will begin in fall 2011
 - Data in the form of line-emitter catalogs and individual spectra will become public after a proprietary period

One of the two banks of VIRUS spectrographs

7/10/2009