New Deeper Surveys of z=7 Ly Emitters in the Subaru Deep Fields: Implications for Galaxy Evolution and Reionization

Kazuaki Ota RIKEN Cosmic Radiation Laboratory

M. Iye, N. Kashikawa (NAOJ), M. Ouchi (Carnegie), K. Shimasaku (Univ. of Tokyo), T. Totani (Kyoto Univ.), M.A.R. Kobayashi, T. Morokuma (NAOJ), M. Nagashima (Nagasaki Univ.), H. Furusawa, T. Hattori (SubaruTelescope) THE LYMAN ALPHA UNIVERSE 6-10 July 2009, Paris

<u>Outline</u>

1. New Deep z=7 LAE Survey in SXDS

- Background: Our previous z=7 survey had weaknesses.
 Solution: We conducted a deeper survey with red-sensitive CCD newly installed on Subaru Suprime-Cam.
 Result: Deeper Ly LF: Implication for gal evol & reionization
- 2. Stellar Pop. of a z=6.96 LAE IOK-1
 - Optical to mid-infrared images of IOK-1

 SED fitting: constraint on stellar population (M*, t, Av, SFR)

 Implication for galaxy evolution and reionization

<u>Outline</u>

1. New Deep z=7 LAE Survey in SXDS

- Background: Our previous z=7 survey had weaknesses.
- Solution: We conducted a deeper survey with red-sensitive CCD newly installed on Subaru Suprime-Cam.
- Result: Deeper Ly LF: Implication for gal evol & reionization

2. Stellar Pop. of a z=6.96 LAE IOK-1

Optical to mid-infrared images of IOK-1

 SED fitting: constraint on stellar population (M*, t, Av, SFR)
 Implication for galaxy evolution and reionization

Discovery of a z=6.96 Ly. emitter IOK-1 The previously most desitant object ever observed Evidence of galaxy formation only 750 Myr after Big Bang

Subaru Deep Field Project Suprime-Cam: Surveys of z=5.7, 6.6, 7 Ly. emitters

Galaxy number desnidty decreases at z > 6

Constraint on reionization from LAEs

3 weakneses in the previous z=7 survey

(1) Depth was shallow. (2) Sample was small. (3) Only one sky field was surveyed.

IOK-1 z = 6.96 LAE

9.800

L(Ly.) > 10⁴³ erg/s Only 1 Ly. emitter

Subaru Deep Field 876 arcmin²

New Red-sensitive CCD installed on Suprime-Cam in July 2008

Target Sky Subaru/XRegien/ton Deep Survey Field SXDS

UV Visible IR Sub-mm

13 hours imaging NB973 = 25.4 (5.) (previously, 24.9)

UKIDSS-UDS Oct, Nov 2008 Subaru

s Work

New z=7 Ly. emitter candidates

Color Selection

Visual Inspection

10 z=7 LAE candidates

Checking NB images taken in different periods Remove spurious and transient objects

13hr 1"16.7hr 1."211hr 1."25.7hr 1."2Oct + NovOct + NovOctNov

#Candidates.7

Promissing 3 Probable 2 Possible 2

same objectCount as 1

Ly LF for 7 candidates F(Ly) = F(NB filter)

Ly. LF for 7 candidates F(Ly.) = 0.7×F(NB filter)

Keck DEIMOS Spectroscopy of z=7 LAE Candidates 13 and 14 Nov. 2009

<u>Outline</u>

1. New Deep z=7 LAE Survey in SXDS

- Background: Our previous z=7 survey had weaknesses.
- Solution: We conducted a deeper survey with red-sensitive CCD newly installed on Subaru Suprime-Cam.
- Result: Deeper Ly LF: Implication for gal evol & reionization

2. Stellar Pop. of a z=6.96 LAE IOK-1

Optical to mid-infrared images of IOK-1
 SED fitting: constraint on stellar population (M*, t, Av, SFR)

Implication for galaxy evolution and reionization

Subaru Deep Field 876 arcmin²

z=6.96 LAE IOK-1

Subaru Suprime-Cam BVRiz, NB973

UKIRT WFCAM K-band Spitzer IRAC .6,4.5,5.8,8.m

Rest frame UV to Optical images

Subtracting the neighbor with GALFIT

Original Model Residual

SED fitting: Bruzual & Charlot 03 + HyperZ

JH did not reproduce observed SFR Did not include them. Used measured fluxes (instead of upper limits) B flux not measurable 1 upper limit

Best-fit Stellar Population Model Parameters

