Lyman-alpha at z~6

Andy Bunker (Oxford),
Elizabeth Stanway (Bristol), Richard Ellis (Caltech), Laurence Eyles (Exeter) Dan Stark, Richard McMahon (IoA)
Also: [Keck data]: Tommaso Treu, Kevin Bundy, Pat McCarthy
[Gemini data]: Karl Glazebrook, Bob Abraham and the GLARE consortium

"Lyman break technique" - sharp drop in flux at λ below Ly- α. Steidel et al. have >1000 z ~ 3 objects, "drop" in U-band.

"Lyman break technique" - sharp drop in flux at λ below Ly- α.
Steidel et al. have >1000 z~3 objects, "drop" in U-band.

Pushing to higher redshift- Finding Lyman break galaxies at $\mathrm{z} \sim 6$:
 using i-drops.

 Using HST/ACS GOODS data - CDFS \& HDFN, 5 epochs B,v,i',z'

GLARE project - Stanway et al $(2004,2007)$

Figure 10.

Conclusions

THRILLER - have obtained spectroscopic redshifts for some of the most distant objects (within reionization epoch), confirming Lyman-break technique selection @ z~6 BAD - selection effects at redshift boundary (effect of line contamination altering colours) and incompleteness

Higher equivalent width Lyman alpha and bluer rest-UV Colours at $\mathrm{z} \sim 6$ hints at lower metallicity, dust and perhaps a different IMF (such conclusions are DANGEROUS)

The future - near-IR spectroscopy (including JWST/NIRSpec could get Lyman-alpha at $z>7$, but could be compromised by Gunn-Peterson absorption (might be saved by HII ionized BUBBLES)

