$Ly \alpha \ Blobs$ and the relationship with AGN and sub-mm sources

Toru Yamada (Tohoku University)

Lya Blobs

Large Extended Ly_{\alpha} Emitters

 $\frac{radio\ quiet}{d{\sim}30\text{-}150 kpc},\ L{\sim}10\text{+}42\text{-}44\ erg/s,\ \delta v \sim 500\text{-}2000\ km/s$

Size defined by - isophotal area in Ly∝ emission - half-light radius / FWHM

References see below

High-Redshift $Ly\alpha$ Haloes

Lya Halo assoc. w/

Powerful Radio Galaxies

- Typically ~30-150kpc, log L(LyA)~44 erg/s
- a good fraction (~30%) size > 100 kpc
- alignment effects / jet-activity related ?

Radio-Loud Quasars

- -Typically ~50-100 kpc, logL=44-45 erg/s H
- radio-jet related? / ~PRG halos ?
- dense environment?

Radio-Quiet Quasars

-Typically ~10-50 kpc -logL~43-44 erg/s < RLQs

4C41.17 z=3.8 from van Breugel+ 2006

McCarthy 1993 ARAA for earlier results Van Ojik et al. 1997 Venemans et al. 2007

Heckman et al. 1991 Hu et al. 1991 Lehnelt and Becker 1998

Weidinger et al. 2004 Christensen et al. 2006

High-Redshift Ly α Halo

Lya Halos assoc. w/

Sub-mm Galaxies (overlap with $Ly\alpha$ Blobs, PRGs)

Ivison et al. 1998 Greve et al. 2007 Geach et al. 2006

Lyman-Break Galaxies

Hayashino et al. 2005

<u>Motivation to Search/Study Lya Blobs</u>

Gaseous Environment of High-Redshift Galaxies

Gas Bounded in Collapsed Halo

Infall / Accretion

Ourflow [SNe / AGN feedback]

Gas Bounded in Collapsed Halo

Size → Lower limit of their Mass (assuming spherical collapse model)

$$\begin{split} M_{vir} &= 4/3 \pi R_{vir}^{-3} \; \rho_{crit}(z) \; \bigtriangleup_c(z) > \; 4x10^{10} \; (R_{Ly\alpha}^{-} / \; 25 kpc)^3 \; \; M_{sun} \\ & (at \; z{\sim}3) \end{split}$$

● Size, Velocity width → Dynamical Mass

 $\frac{|M_{dyn}|}{\sim 5x10^{11} (R_{Ly\alpha} / 25 kpc) (\Delta V / 300 km/s)^2} M_{sun}$

Cooling Accretion in Collapsing Halo

Simulation by Fardel et al. 2001

Gas heated by virial shock0.1in the collapsing haloscools and accretes radiating Ly α emission

Cold Gas Infall

Cold gas stream penetrating hot halo of massive forming galaxies which results in SF

T~0.01-0.1 Tvir

320kpc

"radial flux of the cold gas stream" **Dekel et al. 2009**

Keres et al. 2004, 2009

Galactic Superwind

Taniguchi and Shioya (2000)

$$r_{\rm shell} \sim 110 L_{\rm mech,43}^{1/5} n_{\rm H,-5}^{-1/5} t_8^{3/5} \ \ {\rm kpc}, \label{eq:rshell}$$

$$v_{\rm shell} \sim 650 L_{\rm mech,43}^{1/5} n_{{\rm H},-5}^{-1/5} t_8^{-2/5} {\rm km~s^{-1}},$$

$$L_{\rm mech} \sim \eta \ E_{\rm SN} \ N_{\rm SN}/t_{\rm GW} \sim 10^{43} \ {\rm erg \ s^{-1}}$$

For massive starburst

$$n_{\rm LAB} \simeq 3.4 \times 10^{-5} h^3 {\rm Mpc}^{-3}.$$

Galactic Superwinds

SSA22 Steidel's Blob1 z=3.1 Subaru Suprime Cam Image (Matsuda et al. 2004) Mori and Umemura 2006 Simulation SNe shock heating

AGN feedback/outflow

"AGN feedback"

Ciotti and Ostriker 1997,2007,2009 Silk and Rees 1998, Fabian 1999 Wythe and Loeb 2005 Hopkins et al. 2006etc., etc.

AGN activity heats ISM

<u>Radio Jet</u>

Gas Motions: Can you tell Inflow/Outflow?

Dijkstra et al. 2006 Infalling gas clouds

Verhamme et al. 2008 Expanding shell for LBG/LAE

Gas Motion, Scattering, Observed Profiles

Wind (expanding shell absorption)

Collapsing Lyα halo (Dijkstra+06)

Ionizing source @ center (Dijkstra+06)

Observations Of Lyα Blobs

Prototypical Gigantic Ly_{\alpha} **Blobs**

Steidel et al. 2000 SSA22 Blob1 Sub-mm source reported, not recovered X-ray source is NOT detected Keel et al. 1999 53W002 field No.18

SCUBA Sub-mm Source X-ray AGN, obscured (narrow-line, low excitation)

Both Subaru Images (Matsuda+04, Nakamura+0905)

53W002 'AGN cluster' @ z=2.39

SSA22 Proto-cluster / superstructure @ z=3.09

Matsuda-Blobs z=3.1 >30kpc

Known LABs (>20kpc, by 'their' definition, radio quiet)

references	Z	N	Size * (kpc)	L(LyA) (erg/s)
Keel et al. 1999	2.39	1	100	1.e44
Steidel et al. 2000	3.09	2	150	1.e44
Matsuda et al. 2004	3.09	33	30-120	1.e43-44
Palnus et al. 2004	2.38		~50	1.e43-44
Dey et al. 2005	2.66	1	160	1.7e44
Nilsson et al. 2006	3.16	1	60	1.e43
Smith et al. 2007	2.83	1	95	2.1e44
Saito et al. 2008	3.7	1+	70	
Yang et al. 2009	2.3	4	30-50	1.e43-44
Matsuda et al.	3.09	76	30-70	1.e43-44
Ouchi et al. 2009	6.6	1	20	4.e43
Prescott et al. 2009	1.69	1	45	4.e43
Smith et al. 2008	2.83	17	20-100	1.e43-44
Ivison et al. 1998	2.8	1	~100	
Greve et al. 2007	2.67	1	110	

'Detection' of Ly α Blobs by isophotal area

Z=3.1 Matsuda et al. 2004 SB threshold ~ 2 x 10^{-18} erg/s/cm²

Z=2.3 Yang et al. 2009 SB threshold ~ 5 x 10⁻¹⁸ erg/s/cm²

~ NOT (very much) discrete population from other $Ly\alpha$ Emitters in Size, Luminosity, SB, but the LARGEST, more LUMINOUS

Number Density

Yang et al. 2009

Rare, ~ $10^{-5} - 10^{-6}$ / Mpc³

Clustering

$Ly\alpha$ Blobs preferentially observed in the high-density regions $Ly\alpha$ Blobs themselves are strongly clustered population

Large gas motion $\triangle v \sim 500-200$ km/s

Bower et al. 2004 SAURON

Fig. 4.— The spatial variations of the peak velocities of the Ly α nebula (upper panel) and the FWHMs corrected for the instrumental resolution (lower panel). Data for the triplepeaked regions and the double-peaked regions are shown by open squares and open triangles, respectively. Those for the single-peaked regions are shown by filled circles. Measurement errors are shown by vertical bars.

Ohyama et al. 2003 longslit FOCAS

Giant expanding shell?

SSA22 z=3.1 Blob2 Wilman et al.

∆v~1000 km/s Abs→ HI expanding shell?

Ly α Profiles of Ly α Emitters

Matsuda et al. 2006

Ly α Blobs (SSA22 z=3.1)

More compact $Ly\alpha$ Emitters

Line Width

Matsuda, TY, et al. 2006

 $M_{\rm dyn} \sim 3 \sigma^2 R/G$

If superwind; SF time scale (age) ~ 2*r / σ

Stellar Mass

60% of the counterparts of LAB are LBG with R<25.5 (Matsuda, TY, et al. 2004)

MOIRCS Ks

MOIRCS Ks

Uchimoto, TY, et al. 2008

Stellar Mass of (Plausible) the Galaxy Counterparts of LABs

Size, Velocity width, Stellar mass, clustering

→ Lyα Blobs are associated with massive objects

 $\sim 10^{11} \text{--} 10^{12} \text{ M}_{sun}$

FYI, Appendix: Lya Blobs ZOO

A Ly α Blob at z=6.6

Ouchi et al. 2009

D~ 20kpc

Simulated Image at z=6.6

Origins of the Extended LyA Emission (what powers LABs?)

- Galactic Superwinds / AGN feedback

Photoionization
 by (hidden) massive stars
 by (hidden) AGN

Cooling Collapse

 (LyA radiation from the gas heated in the collapse of DM haloes)

signatures of 'cooing collapse'?

Large EW
 No counterpart in any other wavelength

```
Nilsson et al. 2006
```

- Relatively flat surface-brightness distribution Dijkstra et al. 2006 Nilsson et al. 2006, Smith et al. 2008
- Red sharp cut off in profile

Dijkstra et al. 2006 Smith et al. 2008

- Diffuse HeII (for hot, T~10⁵ gas)? Yang et al. 2006

Nilsson et al.'s Blob z=3.16

Fig. 2. Thumbnail images of all available multi-wavelength data in the GOODS South field, centred on the Ly α blob. All images are $18'' \times 18''$.

Not detected in any other wavelength ... cooling collapsing object? **Object?**

Smith et al.'s Blob z=2.83

(g) J

26"

(i) 4.5 μm

MIPS detected

First confirmed LAB in $\sim 15 \text{ deg}^{-2}$ NB survey w/ INT

(h) K

Cold gas accretion? (~Fardel+01, Dijkstra+06) - SFR(UV,LyA[4"]) ~ 20 M/yr -Red sharp cut off(?) AGN/SF not sufficient to power entire Ly α

signatures of 'galactic superwind'?

- Large velocity width

Ohyama et al., Steidel et al., Dey et al., Matsuda et al.

- Line profile for expantion Wilman et a
- Diffuse metal emission??
- Shell morphology Matsuda et al.2004

signatures of 'Starburst/AGN'?

- MIR/Sub-mm Detection

Dey et al., Geach et al., Ivison et al. Webb et al. (2009)

-PAH Colbert et al.

- X-ray Detection Geach et al.

> 8um counterparts of 6 LABs

> > Webb, et al.

2. Ly α Blobs and Sub-mm Sources

Sub-mm Properties of Ly α Blobs

SCUBA SMM 02399-0136 (z=2.8) Ivison et al. 1998

53W002 No.18 LAB ... Keel et al. (1999)

> Detected in Sub-mm observation (Smail et al. 2003)

10"

Greve et al. 2007 J065045.4 z=2.672

HzPRG many are sub-mm detected

Sub-mm Properties of Ly α Blobs

Geach, et al. 2006

5 / 23 detected at >4.5mJy SFR ~ 1000 M_{sun}/yr + statistical detection ~3.0 (±0.9) mJy

SSA22 Blob1 sub-mm observations

ASTE+AzTEK Observations of SSA22 protocluster

Tamura et al. 2009

Overdensity of sub-mm sources in Ly α overdensity at ~50Mpc scale Z=3.1

A fraction of Lyα Blobs are bright sub-mm sources
 → massive starburst galaxies

- for SSA22, 5(4)/23 are detected by SCUBA
- some large Blobs are MIPS sources

What is the difference between $Ly\alpha$ Blobs detected and NOT detected in sub-mm?

Superwinds?
 → sensitive search for metal lines is badly needed!

3. Ly α Blobs and Active Galactic Nuclei

3-1. AGN in Lya Blobs

3-2. Extended Lyα Haloes associated with Quasars / Powerful-Radio Galaxies

3-2. AGN in Ly α Blobs

A large fraction of giant (~50-150kpc) $Ly\alpha$ Blobs show evidence of AGN

Geach et al. (2009)

Yang et al. (2009)

2/4 large blobs show high-ionization lines

5/29 Blobs at SSA22 /Chandra

Keel et al. (1999) X-ray (Chandra) detected Smail et al. 2003

Dey et al (2004) z=2.83 CIV, HeII, MIPS 24um

Smith et al. (2009) z=2.85 Radio, opt-MIR SED

Webb et al. (2009) IRAC/MIPS SED SSA22 6/27

AGN among SSA22 z=3.1 Ly\alpha Blobs (35 Matsuda Blobs)

AGN fraction >17% (X-ray) ~20% (MIR), maybe > 20%

- 1. Spitzer results Webb et al. (2009), Geach et al. (2006)
- 2. Chandra results Lehmer et al. (2008), Geach et al. (2009)

Webb et al. 2009

Spitzer IRAC 8 & 24 µm sources

6/26 Blobs

$Ly \alpha$ Blobs detected in MIR show the IR colors between SMGs and Quasars

Chandra 400ks observation

Lehmer et al. (2008), Geach et al. (2009)

X-ray sources are detected in 5 Ly∝ Blobs

@8um source
 position

 $Lx \sim >L(Ly\alpha)$

 Γ eff < 1 obscured sources N(H) > 10²³cm⁻²

Case of photoionization by AGN and/or SF UV continuum

>15-20% of the Ly α Blobs with 30-150 kpc host AGN with L~10^{43-44} erg/s

→AGN contribution, either photoionization and mechanical energy input to the Lyα emission must be there.

For large blobs (>50kpc), AGN detection rate is high (>50%, TBC), but not all.

There are overlap with sub-mm sources for the AGN-associated $Ly\alpha$ Blobs. Ly α power source is not unique.

Matsuda, TY, et al. 2004 'LAB 18'

24um

No LBG (UV source)

R

Chandra source Webb, TY, et al. (2009)

8um

53W002 'AGN cluster' @ z=2.39 Keel et al. 1999

Smail et al. 2003

Gray SCUBA Contour Chandra

3-2. Extended Lyα Haloes associated with Quasars / Powerful-Radio Galaxies

Extended Ly α Halo Associated with RLQs

6500

6000

5500

7000

Cont. subtracted

Δn

Extended Ly α Halo Associated with RQQs

Christensen et al. 2006 (PMAS, Calar Alto)

Size 10~60 kpc Log L(LyA) ~ 43-44 [erg/s] FWHM ~ 500-1000 km/s

(1) Name	(2) z (Lyα)	(3) V (km s ⁻¹)	(4) Σ (Ly α) (erg cm ⁻² s ⁻¹ arcsec ⁻²)	(5) size (kpc)	(6) f_{tot} $(10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1})$	(7) log L_{tot} (erg s ⁻¹)	(8) <i>FWHM</i> (km s ⁻¹)	$(9)\Delta V(km s-1)$
Q0953+4749	4.489			13	0.36 ± 0.17	42.9	1000	1800 ± 200
Q1425+606	3.204	600-200	2×10^{-16}	34	9.8 ± 0.8	43.9	500	100 ± 100
Q1451+122	3.253			15	1.8 ± 0.5	43.2	500	-600 ± 100
Q1759+7539	3.049	200-300	3×10^{-16}	60	9.9 ± 1.6	43.9	450	0 ± 100
Q2233+131	3.301			10	1.1 ± 0.4	43.0	<400	700 ± 100

Extended Ly α Halo of Powerful Radio Galaxies

-Typically ~30-100kpc, -log L(LyA)~44 erg/s

Large Lyα halo (>30kpc) is seen for many HzPRGs (e.g., van Ojik et al. 1997; Venemans et al. 2007)
PA(LyA) correlates with PA(radio jet) (alignment effect)
Gas near radio axis: metal enriched ionized (e.g., Reuland et al. 2007)
Origins of further extended halo

(~minor axis of jet) is still uncertain

Chambers et al. 1990 van Breugel et al. 2006

Venemans et al. 2007

Rest-frame optical lines

4C41.17 Reuland et al. 2007

At least inside/near radio-jet axis - photo-ionized gas - metal enriched _____

Fraction of Powerful Radio Galaxieswith Giant (>50-100 kpc)Ly α Halo

Table 5. Luminosity, size and position angle (PA) of the Ly α halos surrounding the radio galaxies observed in our VLT program. The position angles of the halos are measured from the Ly α images (Figs. 14–17) and are accurate to ~10 degrees.

Name	L _{Lya}	Size	PA halo	PA radio
	erg s ⁻¹	kpc×kpc	deg ^a	deg ^a
BRL 1602-174	7.5×10^{44}	90×55	60	56 ^b
MRC 2048-272	6.5×10^{43}	70×40	25	42^{b}
MRC 1138-262	2.5×10^{45}	250×125	74	98 ^b
MRC 0052-241	7.5×10^{43}	35×30	5	15 ^b
MRC 0943-242	2.5×10^{44}	50×40	55	74 ^b
MRC 0316-257	7.0×10^{43}	35×25	55	53 ^b
TN J2009-3040	3.0×10^{44}	40×40	_c	144 ^b
TN J1338-1942	4.5×10^{44}	130×45	170	152 ^b
TN J0924-2201	1.5×10^{43}	10×10	90	74 ^b

Table	4.	Lyα	parame	ten

Source	$FWHM_{Ly\alpha}$	H1 abs	$D_{Ly\alpha}^{20\%}$	$D_{Ly\alpha}^{tot}$	$\log L_{Ly\alpha}$	$M_{Ly\alpha}$	M(H I)	ΔS	n_S	w_S
(1)	(2)	(3)	(kpc) (4)	(kpc) (5)	(eig s chi) (6)	(10 M _☉) (7)	(10 M _☉) (8)	(Kpc) (9)	(10)	(11)
0200+015	1420 ± 75	1	42	72	43.73 ± 02^{a}	2.0	3.1	11	1	0.2
0211-122	950 ± 200	1	102	102	43.42 ± 01	2.2	1.6	22	3-4	1.6
0214 + 183	1200 ± 100	1	48	48	42.78 ± 05^{a}	0.8	2.6	6	1	0.5
0355-037	1400 ± 100	0	94	105	43.19 ± 02	1.6		7	1-2	1.0
0417-181	1550 ± 75	1	42	42	43.21 ± 02	1.1	4.9	10	1	0.4
0529-549	1550 ± 75	1	41	45	43.44 ± 02^{a}	1.4	1.8	9	2	0.8
0748 + 134	1300 ± 100	0	45	60	43.50 ± 01	1.6		21	1	0.7
0828+193	1350 ± 150	1	37	103	43.84 ± 01	2.1	0.3	12	3	0.9
0943-242	1575 ± 75	1	15	15	44.07 ± 01	1.4	0.1	3	1	0.4
1243+036	1550 ± 75	0	46	135	44.49 ± 01	7		25	4	1.2
1357 + 007	1275 ± 75	1	20	45	43.60 ± 03	1.1	0.1	8	2	0.9
1410-001	900 ± 75	0	53	79	44.12 ± 01	3.5		14	2	1.1
1436+157 ^b	1100 ± 75	1	51	88	43.70 ± 02^{a}	2.1	6.0	3	1 - 2	0.4
1545 - 234	900 ± 75	1	32	45	43.56 ± 01	1.6	0.1	13	1 - 2	0.8
1558-003	950 ± 50	0	46	77	43.85 ± 01	2.4		16	1	0.4
1707 + 105	670 ± 50	0	97	134	43.62 ± 01	2.7				
2202 + 128	1150 ± 75	1	37	37	43.67 ± 01	1.7	0.1	9	4-5	2.6
4C41.17	1000 ± 100	0	59	98	44.74 ± 03	6.5		20	3	1.2

^a measured only from high resolution spectra, which sometimes underestimates the flux.

^b 1436+157 USS quasar; the parameters are for the narrow line component only.

Note: The size parameter $D_{1y\alpha}^{20\%}$ was defined because in the weakest $Ly\alpha$ regions, the most extended detected emission was at ~ 20% of the $Ly\alpha$ peak flux. For those weakest sources $D_{1y\alpha}^{20\%}$ is therefore equal to $D_{1y\alpha}^{tot}$

Venemans et al. 2007 $1/9 \sqrt{ab} > 100 kpc$ $4/9 \sqrt{ab} > 50 kpc$

van Ojik et al. 1997 5/18 d > 100kpc 11/18 d > 50kpc

> Typically detection threshold ~ 1.e-18 erg/s/cm2

~10-30% > 100 kpc ~50% > 50 kpc

Presence of large halo is related with overdensity?

From Venemans et al. 2007

Field	z	N ^a _{img}	$N^b_{ m spec}$	$N_{\rm conf}^c$	N ^d none	N ^e low z	N ^f _{extra}	$N_{\rm tot}^g$	$n_{ m rg}/n_{ m field}^h$	$\sigma_v^i \over { m kms^{-1}}$	${M_{\rm pcl}^j\over 10^{14}M_\odot}$
1602	2.04	2	_	_	_	_	_	_	_	-	_
2048	2.06	10	3	2	1	0	1	3	$1.2^{+0.8}_{-0.7}$	_	_
1138	2.16	37	11	11	0	0	4	15	4 ± 2	900 ± 240	3-4
0052	2.86	57	36	35	1	0	2	37	$3.0^{+0.5}_{-0.4}$	980 ± 120	3-4
0943	2.92	65	30	25	4	1	3	28	$3.2^{+0.9}_{-0.7}$	715 ± 105	4–5
0316	3.13	77	30	28	1	1	3	31	$3.3_{-0.4}^{+0.5}$	640 ± 195	3-5
2009	3.16	21	9	9	0	0	2	11	1.7 + 0.8	515 ± 90	_
1338	4.11	54	36	34	2	0	3	37	4.8 ^{+1.1}	265 ± 65	6-9
0924	5.20	14	8	6	0	2	0	6	$2.5^{+1.6}_{-1.0}$	305 ± 110	4–9

1138 .. 250kpc x 125kpc 1338 .. 130kpc x 45kpc

<u>The largest Ly α haloes appear in the densest</u> <u>environment of other Ly α emitters?</u>

"Spiderweb" galaxy (MRC1138-262) at z=2.2

Assembly of galaxies and $Ly\alpha$ Halo

Hatch et al. 2009

ID	$_{(M_{\odot}yr^{-1})}^{SFR}$	$\begin{array}{c} Mass \\ (10^9 M_\odot) \end{array}$	Mass (upper limit) (10 ⁹ M _☉)	Detection method
1	15.6 ± 0.7	1100 ± 200	9900 ⁺³⁰⁰	$Ly\alpha, H\alpha, BB$
2	0.0 ± 0.4	12^{+13}_{-7}	16+15	BB
3	2.2 ± 0.5	11±8	105+18	Photo-z
4	0.0 ± 0.4	31^{+24}_{-16}	34 ⁺¹⁸	BB
5	5.2 ± 0.5	$7.2^{+0.4}_{-1.4}$	15±3	$Ly\alpha$
6	4.4 ± 0.4	9.3+5.4	37^{+175}_{-6}	Lyα
7	3.8 ± 0.4	3.4+0.6	6.9 ^{+2.6}	$Ly\alpha$
8	1.2 ± 0.5	5.6+4.5	72^{+3}_{-64}	$H\alpha$
9	7.2 ± 0.5	$5.2^{+1.5}_{-3.4}$	9.7+64	Lyα
10	4.4 ± 0.4	0.4+0.3	$0.4^{+0.8}_{-0.1}$	$Ly\alpha, H\alpha$
11	5.8 ± 0.4	$2.0^{+1.1}_{-1.0}$	38+13	Lya,Ha
12	2.2 ± 0.6	29 ⁺²⁹	111^{+150}_{-42}	$Ly\alpha, H\alpha, BB$
13	0.0 ± 0.4	6.4+6.2	22±9	BB
14	0.4 ± 0.7	16 ⁺¹⁸	55+13	BB
15	5.2 ± 0.4	$1.3^{+1.0}_{-0.5}$	28 ⁺¹⁸	$Ly\alpha$
16	0.7 ± 0.7	50+35	110+54	BB
17	1.8 ± 0.4	$2.1^{+0.8}_{-0.7}$	6-4	Morphology
18	1.8 ± 0.4	$0.2^{+1.0}_{-0.1}$	9+8	Morphology
19	1.3 ± 0.5	$0.2^{+1.7}_{-0.1}$	$0.7^{+20}_{-0.2}$	Morphology

< 150 kpc Merge to the central object To increase the mass ~2x

SF will be exhausted before the merging?

Table 1. The mass is derived from fitting the photometry to a single exponentially declining star formation history. The mass upper limit is derived from a two-model fit to the photometry, in which one model is maximally old, i.e., 3 Gyrs and the other is maximally young (1 Myr). Column 5 lists the detection methods by which the galaxy was selected to be in the protocluster. Ly α , H α are objects which have an excess of line-emission placing them at the same redshift as the radio galaxy, BB indicates galaxies with strong Balmer breaks inferred from large observed J₁₁₀-H₁₆₀ colours.

B20902+34 Radio Galaxy in Giant HI Envelope? Adams et al. (2008)

Fig. 2.— The geometry of our simulation. θ_i is the inclination as constrained by Carilli (1995). R_v is the system's virial radius. R_i is the ionization radius of the cones. θ_o is the opening angle of the ionization cones assumed here to be 90°. R_i , R_v , θ_o , and two variables controlling the velocity field are the model's five tunable parameters.

(a) Observed

(b) Simulated, Spectral Decomposi- (c) Simulated, Origin Cone Decompotion sition

 $Ly \alpha$ Blobs and the Halo of Powerful Radio Galaxies How they are related or different?

Large dimension, A large fraction of the energy comes from the radio jet for the radio galaxies. alignment effect / RLQ-RQQ comparison

Host galaxies: PRGs are more massive, central dominant? stellar mass of LABs < a few x 10¹¹ M_{sun} though more sample needed.

After radio jet turned off, PEG ~ Ly\alpha Blobs?

Zirm et al. 2009

4. Summary

Large Ly α Blobs are associated with massive objects ${\sim}10^{11}\text{-}10^{12}~M_{sun}$

A fraction of Lyα Blobs are bright sub-mm sources
 → massive starburst galaxies

>15-20% of the Lyα Blobs with 30-150 kpc host AGN with L~10⁴³⁻⁴⁴ erg/s. The fraction seems even higher for large Blobs.

Yet, there are objects with no signiture of sufficient Starburst and AGN activity to power $Ly\alpha$ emission.

<u>Lya Blobs are unique objects to study early phase of</u> (massive) galaxy formation , especially their gaseous environment
Backup

<u>Motivation to Search/Study Lya Blobs</u>

Gaseous Environment of High-Redshift Galaxies

Gas Bounded in Collapsed Halo

Infall / Accretion

Outflow [SNe / AGN feedback]

High-Redshift Ly α Halo and Galaxy Formation

Early Collapse Phase -- virial shock \rightarrow cooling radiation Pure Ly α objects ?

Some stars form + Ly α emission from further accreting gas

Major star formation → photo-ionization by massive stars

AGN activity → photo-ionization / jets / feedback

Galactic superwind → shock excitation / ionization

Interaction with cooling flow gas in dense environment Ionization of HI halo by background UV What powers extended Lya emission?

Photo-ionization Massive Stars Active Galactic Nuclei UV background

Shock heating/ionization Galactic superwinds AGN radio jet / radiation outflow

Scattering

Size & Surface Brightness

Matsuda, TY, et al. 2008

$Ly\alpha$ Haloes of Lyman Break Galaxies

Z=3.1 LBGs and LAEs

Not Lya Blobs

$Ly \alpha$ Haloes of Lyman Break Galaxies

$Ly\alpha$ Haloes of Lyman Break Galaxies

Stack of 22 known LBGs at z~3.1 (which are not detected in our LAE or LAB sample)

	SSA22 Protocluster			CDF + SSA22 Field			
109 6 22 1-14							
$(ergs cm^{-2} s^{-1})$	Necro	Ν.	$f_{\alpha}(%)$	Neer	Ν.	$f_{\alpha}(%)$	Enh ^a
(ergs en s)	- 'AGN	¹ 'gal	<u>JC(/0)</u>	1 AGN	- 'gai	JC(/0)	Lim
$z \approx 2-3.4$ Lyman Break Galaxies							
43.50	2	21	$9.5^{+12.7}_{-6.1}$	2	103	$1.9^{+2.6}_{-1.3}$	$4.9^{+11.7}_{-3.9}$
43.75	2	26	$7.7^{+10.2}_{-5.0}$	4	118	$3.4^{+2.7}_{-1.6}$	$2.3^{+5.8}_{-1.7}$
44.00	2	27	$7.4^{+9.8}_{-4.8}$	3	128	$2.3^{+2.3}_{-1.3}$	$3.2^{+7.8}_{-2.4}$
44.25	0	27	<20.7	1	130	$0.8^{+1.8}_{-0.6}$	<27.0
$z = 3.1 \text{ Ly}\alpha$ Emitters							
43.50	2	39	$5.1^{+6.8}_{-3.3}$	1	142	$0.7^{+1.6}_{-0.6}$	$7.3^{+17.0}_{-6.2}$
43.75	4	83	$4.8^{+3.8}_{-2.3}$	1	194	$0.5^{+1.2}_{-0.4}$	$9.3^{+16.9}_{-8.7}$
44.00	4	121	$3.3^{+2.6}_{-1.6}$	1	223	$0.4^{+1.0}_{-0.4}$	$7.4_{-6.9}^{+13.3}$
44.25	1	144	$0.7^{+1.6}_{-0.6}$	1	246	$0.4^{+0.9}_{-0.3}$	$1.7^{+5.7}_{-1.3}$

Masaru Kajisawa, 2008 April, JAS

Appendix: Ly α Blobs ZOO

SSA22 LAB1 z=3.1 (Steidel et al. 2000; Matsuda, TY, et al. 2004)

SSA22 LAB1 gas motion $\triangle v \sim 2000 \text{ km/s}$

Bower et al. 2004 SAURON

Fig. 4.— The spatial variations of the peak velocities of the Ly α nebula (upper panel) and the FWHMs corrected for the instrumental resolution (lower panel). Data for the triplepeaked regions and the double-peaked regions are shown by open squares and open triangles, respectively. Those for the single-peaked regions are shown by filled circles. Measurement errors are shown by vertical bars.

Ohyama et al. 2003 longslit FOCAS

SSA22 LAB1 sub-mm observations

Extended? $\Theta > 4-5$ " if Gaussian

SSA22 LAB1

SSA22 LAB1

SSA22 LAB2 expanding shell?

∆v~1000 km/s Abs→ HI expanding shell?

Dey et al.'s Blob z=2.656

Discovered in a course of identification of MIPS 24 μ m (860 μ Jy) sources

Nilsson et al.'s Blob z=3.16

Fig. 2. Thumbnail images of all available multi-wavelength data in the GOODS South field, centred on the Ly α blob. All images are $18'' \times 18''$.

Not detectedObject?in any other wavelength... cooling collapsing object?

Red

Smith et al.'s Blob z=2.83

First confirmed LAB in ~15 deg^2 NB survey w/ INT

Cold gas accretion ? (~Fardel+01, Dijkstra+06) - SFR(UV,LyA[4"]) ~ 20 M/yr - Red sharp cut off(?)

λ

Palunas/Francis LAB z=2.38

PALUNAS ET AL.

Fig. 2.— Histogram of inferred total far-infrared luminosity for MIPS sources associated with z=2.38 Ly α sources. The three sources potentially associated with the Ly α blobs B6 and B7 are marked with cross-hatching.

Smith et al.'s Blob z=2.85

Radio detected, but not radio laud Type-2 QSO

