Cold Streams as Lyman Alpha Blobs

Avishai Dekel, HU Jerusalem Paris, July 2009

T. Goerdt, D. Ceverino, R. Teyssier, A. Sternberg

Collaborators

Simulations: R. Teyssier (Paris) A. Kravtsov (Chicago) D. Ceverino (HU) F. Bournaud (Paris) HU Team: Y. Birnboim (CfA) D. Ceverino (HU) J. Freundlich (Paris) T. Goerdt (HU) E. Neistein (MPA) R. Sari (HU) E. Zinger (HU)

Outline

- Star-forming disks and quenched ellipticals at high redshift. mergers?
- Feeding massive galaxies by cold streams inflow rate vs SFR, smooth flows vs mergers
- Disk fragmentation & bulge formation
 steady state, migration to a bulge, star formation, stabilization by clumpy streams
- Origin of bimodality at high redshift

1. Observed Bimodality at High z

in ~10¹¹ M_{\odot} galaxies at z~2-3:

Intense star formers: SFR~150 $M_{\odot}yr^{-1}$ clumpy, rotating, extended, gaseous disks

Suppressed SFR in compact spheroids

A typical star-forming galaxy at z=2: clumpy, rotating, extended disk & a bulge

 $H\alpha$ star-form regions

color-code velocity field

Genzel et al 08

Open Questions

- Efficient cold gas supply to massive galaxies ?
- High SFR not through major mergers?
- Clumpy, extended, think disks?
- Early formation of so many spheroids ?
- Suppression of SFR ?

2. Cold Streams in Hot Massive Halos at High z

Birnboim & Dekel 2003 Keres et al. 2005 Dekel & Birnboim 2006 Keres et al. 2008 Ocvirk et al. 2008 Dekel et al. 2009, Nature

Cold Streams in Big Galaxies at High z

Gas Density in Massive Halos 2x10¹²M_o

Ocvirk, Pichon, Teyssier 08

Stream Properties

Dekel et al. 2009, Nature

A disk fed by streams at high z

Governato, Quinn, Brooks et al.

Massive high-z disks by cold narrow streams

Gas density: following dark-matter filaments

Entropy: virial shock & low-entropy streams

Inward gas flux: all in the streams

-150

-100

-50

50

0

100

150

Gas inflow rate vs observed SFR

Dekel et al. 2009, Nature

Average Accretion Rate into a Halo

Neistein, van den Bosch, Dekel 06; Neistein & Dekel 07, 08

From N-body simulations or EPS, Approximate for LCDM:

$$\left\langle \dot{M}_{b} \right\rangle_{vir} \approx 6.6 \, M_{\Theta} yr^{-1} M_{12}^{1.15} (1+z)^{2.25} f_{0.165}$$

 $M=2\times10^{12}M_{\odot}$ z=2.2 \rightarrow dM/dt ~ 200 $M_{\odot}yr^{-1}$

May explain the Star Forming Galaxies if - the streams penetrate efficiently to the disk

- the streams are gas rich
- SFR follows rapidly

Inflow Rate into the Disk

At z~2-3, M~10¹² M_{\odot} , the input rate into the disk is comparable to the infall rate into the virial shock, most of it along narrow streams

R [kpc]

Conditional Distribution of Gas Inflow Rate

Comoving Number Density of Galaxies as a function of gas inflow rate

$$n(\dot{M}) = \int_{0}^{\infty} P(\dot{M} \mid M) n(M) dM$$
Assume scaling of P(Mdot|M)
 $\dot{M}_{b} \approx 6.6 M_{\Theta} yr^{-1} M_{12}^{1/5} (1+z)^{2/5}$
 $n(M)$ by Sheth-Tormen
$$(\dot{M}) = \int_{0}^{\infty} P(\dot{M} \mid M) n(M) dM$$

$$(\dot{M}) =$$

Smooth Flows vs Mergers

Streams in 3D: partly clumpy

Half the stream mass is in clump >1:10

Birnboim, Zinger, Dekel, Kravtsov

Inflow Rate into the Disk

on average, 33% of the flux is in mergers > 1:10 but the duty cycle is < 10%

Fraction of Mergers

3. Lyman Alpha

Goerdt, Dekel, Sternberg, Ceverino, Teyssier 09

Earlier work:

- Haiman et al. 2000
- Fardal et al. 2001 (SPH)
- Furlanetto et al. 2005 (AMR)
- Dijkstra & Loeb 2009 (toy model)

High Resolution Simulations

Ceverino, Dekel, Bournaud 2009

- AMR 35-70 pc resolution
- ΛCDM cosmology
- $M_{vir}\text{=}5\text{x}10^{11}\,M_{\odot}\,$ at z=2.3
- cooling to 300K
- UV background, shielding if n>0.1
- star formation
- feedback, metals

Streams are Largely Self-Shielded

Neutral column density perpendicular to stream

$$N_I \approx 10^{20} \, cm^{-2} \qquad n_H \approx 0.03$$

UV background Lyman continuum intensity at z=3

 $4\pi J^* \approx 2.2 \times 10^5 \ photons \ s^{-1} \ cm^{-2}$

Photoionized column

$$N_{II}^{photo} = \frac{2\pi J^{*}}{n_{H}\alpha_{B}} = \frac{4.2 \times 10^{17}}{n_{H}} cm^{-2}$$
recombination
$$\longrightarrow N_{I} \gg N_{II}^{photo}$$

Lyman Alpha Luminosity

$$L_{L\alpha} = f_{\alpha} \sum \mathcal{E}_i(T,n) V_i$$

radiative transfer

- f_α=0.5
- Ignore dust

Lyman-alpha Luminosity Function

Goerdt, Dekel, Sternberg, Ceverino, Teyssier 09

Power Lyman-alpha Emission by Gravity

Gravitational heating

$$e_{heat}(r) = f_c \dot{M}_c \left| \frac{\partial \phi}{\partial r} \right|$$

Average inflow through halo (EPS, simulations, Neistein, Dekel 06, 07, 08)

$$\dot{M}_c \approx 140 M_{\odot} yr^{-1} M_{12}^{1.15} (1+z)_4^{2.25}$$

The Energy Source: Gravitational Heating vs. UV Background

In the gas that contributes 80% of the luminosity more than 80% of the input energy is gravitational

fractional contribution of gravitational heating

4. Disks with Giant Clumps

Chain Galaxies – Fragmented Disks

NICMOS H₁₆₀ Foerster Schreiber, Shapley et al. 2008

Genzel et al. 2008, Foerster Schreiber et al. 2008b, Elmegreen & Elmegreen 2005, Elmegreen et al. 2007

Clumpy Disks with Bulges

Genzel et al. 08; Förster Schreiber et al. 20

M(≤3 kpc)/M(≤15 kpc)~0.2-0.4

A rotating "chain" of clumps with a bulge

z~2 disks are turbulent

Genzel et al. 2008

Disk Breakup into Giant Clumps Star Formation, Migration to a Bulge, Stabilization

Dekel, Sari, Ceverino 2009 Ceverino, Dekel, Bournaud 2009

Disk – Giant Clumps - Bulge

High gas density \rightarrow disk wildly unstable

Giant clumps and transient features

Self-regulation at Q \sim 1 by clump encounters and torques, high $\sigma/V{\sim}1/4$ Efficient star formation in the clumps

Rapid migration of massive clumps and angular-momentum transport \rightarrow bulge formation

Isolated, gas-rich, turbulent disk - giant clumps - migration - bulge

Formation of an exponential spiral disk and a central bulge from the evolution of a gas-rich primordial disk evolving through a clumpy phase

Models from Bournaud, Elmegreen & Elmegreen 2007

Noguchi 99;

One episode of 0.5 Gyr? green 06, 08

Clump Formation & Migration in a Cosmological Steady State

Disk Buildup by Streams

- Smooth streams build a dense gaseous disk
- A stream with a large impact parameter determines the disk spin
- Clumpy streams generate turbulence

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel, bournaud 2009 AMR res: 70 pc $M_v = 8 \times 10^{11} M_{\odot}$ z=2.1

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel, Bournaud 2009 AMR res: 70 pc $M_v = 8 \times 10^{11} M_{\odot} z = 2.1$

When and where did most stars form?

Open Issues

- Star formation in the giant clumps & clumps survival
- Fate of the hi-z clumpy disks at z=0 thick stellar disks of spirals? Lenticulars?
- How did thin disks form at late z? by cold, spherical, slow accretion in $M_{\rm vir}$ < $10^{12}~M_{\odot}$
- Why are z=0 disks not wildly unstable?
- low input rate of cold streams
- disk is dominated by stars
- dominant bulge (?)
- More detailed modeling of radiation transfer
- Lyman alpha absorbers

Conclusions

Stream-Fed Galaxies: High-z massive galaxies are driven by narrow cold streams of the cosmic web, penetrating hot halos (> $10^{12}M_{\odot}$). 33% clumps >1:10 (mergers), the rest is smoother.

Cold streams \rightarrow L α Blobs powered by gravitational infall

Streams are detectable as absorbers: LLS?, DLAS?

Unstable disks in steady state driven by streams gaseous, extended, turbulent V/ $\sigma \sim 4$, self-regulated by gravity, giant clumps $10^{8-9}M_{\odot}$ & transient features, bulge ~ disk

High SFR in clumps ~ accretion rate ~ $100M_{\odot}$ yr⁻¹.

Bulge buildup: from the disk and by mergers

Bimodality: star-forming disks vs red-and-dead spheroids by stream clumpiness. Morphological quenching: disk stabilized by bulge

