

The Evolution of the Cosmic UV Background at High Redshift

Aldo Dall'Aglio

Astrophysikalisches Institut Potsdam

G. Worseck (UCO/Lick) & L. Wisotzki (AIP)

Dall'Aglio et al 2008b, A&A 491,465; Dall'Aglio et al 2009a, astro-ph: 0906.1484

Paris, 09-07-2009

• Integrating the source (QSOs and galaxies) luminosity functions: Haardt&Madau 1996...2009, Fardal et al. 1998, Faucher-Giguere et al 2009 ...

- Integrating the source (QSOs and galaxies) luminosity functions: Haardt&Madau 1996...2009, Fardal et al. 1998, Faucher-Giguere et al 2009 ...
- Matching the simulated and observed properties (flux distribution, opacity evolution...) of the HI Ly Forest: Rauch et al 1997, Theuns et al. 1998, Tytler et al. 2004, Bolton et al. 2005-2009, Faucher-Giguere et al 2008 ...

- Integrating the source (QSOs and galaxies) luminosity functions: Haardt&Madau 1996...2009, Fardal et al. 1998, Faucher-Giguere et al 2009 ...
- Matching the simulated and observed properties (flux distribution, opacity evolution...) of the HI Ly Forest: Rauch et al 1997, Theuns et al. 1998, Tytler et al. 2004, Bolton et al. 2005-2009, Faucher-Giguere et al 2008 ...
- Determining the signature of the so-called "Proximity Effect", typically combining the signal of many QSOs: Baijtlik et al 1998, Giallongo et al. 1996, Scott et al. 2000, Liske&Williger 2001 ...

The Proximity Effect

The Proximity Effect

The proximity effect on single sight lines

The strength of the proximity effect

Proximity Effect Strength Distribution (PESD)

Proximity Effect Strength Distribution (PESD)

How to enlarge the sample of QSOs?

The Proximity Effect toward ~2000 SDSS Quasars

The Proximity Effect along ~2000 SDSS Quasars

The evolution of the UV background

UVES: R~45000 SDSS: R~2000

Placing our determinations into context

Decomposing the cosmic UV Background

Decomposing the cosmic UV Background

The evolution of the cosmic UV background

• The Proximity Effect can be employed to directly determine an unbiased UV Background photoionisation rate

• The UV Background photoionisation rate is constant at 2<z<3.5 and eventually up to z~4.5

 Star-forming galaxies dominate the cosmic photoionisation rate beyond z~3 and existing surveys may fall short of the measured UV background for z>4.5