Theoretical modeling of LAEs using cosmological simulations and semianalytic models of galaxy formation Ken Nagamine

Univ. of Nevada, Las Vegas

Outline

- * Motivation & Model Requirements:
 - What do theorists need to reproduce in their models?
- * Results on LAE statistics: past & recent works
 - Correlations & scatters in various quantities:
 log SFR (M_{solar} yr⁻¹)
 e.g., M_{star}, M_{uv}, Z/Z_{sun}, E(B-V), EW, f_{ion}, g¹⁰/₈₀ ya

* Conclusions

Concordance **ACDM** model

WMAP5 $(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx (0.26, 0.74, 0.04, 0.7, 0.8, 0.96)$

- Successful on large-scales
- Interpret galaxy obs in the context of ΛCDM model

Requirements

(for both theorists and observers...)

- Galaxy stellar mass function
- Luminosity functions (UV K, IR, Lya,...)
- mass -- metallicity relationship (M_{star} vs. Z/Z_{sun})
- metal -- dust relationship (Z/Z_{sun} vs. E(B-V))
- effects of dust on Lya photons (f_{Lya} vs. E(B-V))
- escape fraction of ionizing photons f_{ion}
- gas kinematics around SF regions

COSMOLOGICAL HYDRO SIMULATION + MULTIPHASE ISM MODEL

- model galaxy formation from first principles in a ΛCDM universe
- GADGET-2 Smoothed Particle Hydrodynamics code (Springel '05) radiative cooling/heating, star formation, SN & galactic wind feedback sub-particle multiphase ISM model
- LBG/LAEs @z=3-6, massive gals, DRGs/EROs, DLAs,

(KN+04ab,	05ab,	07,	08a,b)	
-----------	-------	-----	--------	--

Box size	N _p	<i>m</i> _{DM}	m _{gas}	ϵ	Zend	Wind
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	None
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	Weak
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	Strong
10.00	2×216^{3}	7.16×10^{6}	1.10×10^{6}	1.85	2.75	Strong
10.00	2×324^{3}	2.12×10^{6}	3.26×10^{5}	1.23	2.75	Strong
33.75	2×216^{3}	2.75×10^{8}	4.24×10^{7}	6.25	1.00	Strong
33.75	2×324^{3}	8.15×10^{7}	1.26×10^{7}	4.17	1.00	Strong
100.0	2×324^3	2.12×10^{9}	3.26×10^{8}	8.00	0.00	Strong
100.0	2×486^{3}	6.29×10^{8}	9.67×10^{7}	5.00	0.00	Strong
$-[h^{-1}Mpc]$]	$-[h^{-1}M_{\odot}]$	[h^{-1} kp	c	

Galaxy Stellar Mass & UV Fcns

in cosmological SPH simulations

Galaxy Stellar Mass Function 0 log dn/dlogM_{*} [Mpc⁻³ (logM_{*})⁻¹] + $\overset{-}{\sim}$ $\alpha \sim -2$ z=3z=6-612 8 10 6 $\log M_{\star} [M_{\odot}]$ stellar mass Drory+ '05 Data: Fontana+'06 Perez-Gonzalez+ '07

Reddy+ '09

Galaxy Stellar Mass & UV Fcns @ z=3 in cosmological SPH simulations

Lya Luminosity Function

Assuming

Two simple scenarios

• "Escape fraction" scenario:

• all LBGs emit Ly α emission, but uniformly attenuated by a factor of **f**_{Ly α}: $L_{Lv\alpha}^{observed} = f_{Ly\alpha}L_{Lv\alpha}^{sim}$

Effective escape fraction

$$f_{\rm Ly\alpha} = f_{\rm dust} \left(1 - f_{\rm esc}^{\rm ion}\right) f_{\rm IGM},$$

• "Stochastic" scenario: (or duty cycle)

only a fraction C_{stoc} of star-forming gals are active (or can be observed) as LAE

(due to "interstellar weather")

Degeneracies btw f*, Eduty, fesc, Lya

both based on semianalytic calculations using halo mass func.

Lya Effective Escape Fractions

Authors	f esc, Lya	Notes				
Semianalytic models (uses halo mass fcn)						
Le Delliou+ '06	0.02	top-heavy IMF				
Dijkstra+ '07	0.1 - 0.4	z~6				
Stark+ '07	0.1 - 0.2	z~6				
Kobayashi+ '09	~0.2					
Samui+ '09	0.1 - 0.3					
Dayal+ '09	0.3	z~6				
Cosmological Hydro Simulations						
Barton+ '04	0.1 - 0.35					
Dave+ '06	0.02	adjusted to Santos+ '04				
Nagamine+ '08	~0. I					

(also Mao+ '07; Fernandez & Komatsu '09)

Seems to converge on $f_{esc,Lya} \sim 0.1$ - 0.3

Ly α LF @ z=3

M* vs. SFR @z=3

But this was with a fixed EW of 70Å for L_{Lya} & fixed E(B-V)

Scatter in E(B-V)

$$E(B-V) = 9.0Z^{0.8} + \Delta E$$

(cf. Finlator+ '06)

 ΔE : random Gaussian scatter

Considering the effect of dust on $Ly\alpha$

Considering the effect of dust on $Ly\alpha$

Effect of dust on Lya

- red-dashed: I-to-I, fixed
 EW=70Å
- black curve: Kobayashi+'08
- blue curve: KN model with <f_{dust}>=0.2 @ Ebv=0.15
- data points: Verhamme+ '08, Ono+'09, Atek+ '09

```
Nagamine model:
```

 $\log f_{dust} = \log \langle f_d \rangle + 1. - \exp(\log(E_{bv}/0.15))$

attenuation on UV

Effect of dust on Lya

- red-dashed: I-to-I, fixed
 EW=70Å
- black curve: Kobayashi+'08
- blue curve: KN model with <f_{dust}>=0.2 @ Ebv=0.15
- data points: Verhamme+ '08, Ono+'09, Atek+ '09

Nagamine model:

$$\log f_{dust} = \log \langle f_d \rangle + 1. - \exp(\log(E_{bv}/0.15))$$

UV & Lyα LF w/ variable E(B-V) & EW cut

Rest EW dist.

Rest EW vs. M_{uv} mag

Rest EW vs. M_{star}

EW cut restricts the sample to lower mass population w/ mean M* ~ few x 10⁹ M_{sun}

(thereby reviving the escape fraction scenario)

No significant population of large EW & large M*

red open squares: Pentericci+ '09 magenta points: Ono+ '09

E(B-V) vs. Rest EW

Kobayashi+'09: completely opposite trend due to highly extinct gals with clumpy ISM

galaxy stellar mass

 $f_{Ly\alpha} = f_{dust}(1 - f_{esc}^{ion})f_{IGM}$

What about fesc, ion? (Escape fraction of ionizing photons)

This requires a treatment of radiative transfer. Also closely related to DLA study w/ numerical sims.

Collaborators: Hide Yajima (Tsukuba) (poster #41) Junhwan Choi (UNLV)

Why is radiation important?

$$M_{\rm halo}=2\times 10^{12}h^{-1}M_{\odot}$$

z=3

Why is radiation important?

DLAs

UVB

metallicity

Why is radiation important?

UVB

local stellar radiation

KN04a,b

Effect of UVB

- Previous runs assumed optically thin approx.
- No-UVB run completely overpredicts.
- Weakening the UVB doesn't change the result compared to the orig run.
- Perhaps the UVB was sinking in too much into the halo.
- The run that limits UVB to ρ<0.01 ρ_{th} agrees well w/ data.
 ρ_{th}~0.1 cm⁻³

(cf. Kollmeier+ '09)

Varying results on fesc,ion

Yajima, Choi, KN '09 (in prep.)

Yajima, Choi, KN '09 (in prep.)

• Decreasing f_{esc} as a func of M_{halo} ----

roughly consistent with Razoumov+'09; inconsistent with Gnedin+'09 & Wise & Cen '09

- **f**esc,ion decreases with decreasing redshift
- Dwarf gals are perhaps important for reionization

This variation in **f**esc,ion can be included in the LAE modeling

Effect of local stellar radiation on DLA cross section

Yajima, Choi, KN '09 (in prep)

Conclusions

- Properties of LBGs @z=3 (SFR, color, correlation, MF/LF) are well reproduced in current cosmo. sims.
- Stochastic scenario was favored over the escape fraction scenario from the comparisons of M*-SFR relation, clustering & bias. But depending on the EW cut, the escape fraction scenario may survive.
- Simulation results are consistent w/ LAEs being lower M*, lower metallicity, less clustered and less biased.
- Various correlations (e.g. EW vs. M*, Muv) can be understood as a reflection of M* -- Z (~dust) relationship.
- Dust is important for Lya: LAE & reionization modeling need to take the scatter & mass dependence of fesc,ion, fdust into account.
- Fully self-consistent pop. syn. calculation of L_{uv} & L_{Lya} is needed for more accurate results on EW.