GRBs and the ISM of High Redshift Galaxies

Edo Berger

Harvard University

H N S O C Mg Si Ni Si C Fe Al XXIV IAP Colloquium, Paris, France — July 7-11, 2008

7500

8000

8500

6500

6000

7000

Si

9000

2. DLA Counterparts
& the Mass-Metallicity
Relation at z > 2

Long GRBs = The Death of Massive Stars

Association with type Ic core-collapse supernovae

Mathson et al. 2003; Hjorth et al. 2003

Location in star-forming galaxies

Long GRBs = The Death of Massive Stars

Association with type Ic core-collapse supernovae

Mathson et al. 2003; Hjorth et al. 2003

Location in star-forming galaxies

Wainwright, Berger & Penprase 2007

GRB Detection and Follow-up

~100 GRBs/yr with arcsec positions

Comparison to quasars:

- No Mpc proximity effect
- Small impact parameter
- In star forming regions
- Bright(er) [ind. of z]
- High(er) redshift
- Power law spectrum
- Fade away

Comparison to quasars:

- No Mpc proximity effect
- Small impact parameter
- In star forming regions
- Bright(er) [ind. of z]
- High(er) redshift
- Power law spectrum
- Fade away

GRB Redshift Distribution

Berger et al. 2005; Jakobsson et al. 2006

GRB Redshift Distribution

Chary, Berger, & Cowie 2007

 $SFRD \sim GRB \times (5\pm 2) \times 10^9$

GRB Redshift Distribution

Chary, Berger, & Cowie 2007

 $\log N_H = 22.1 \pm 0.1$

 $[S/H] = -1.2 \pm 0.1 = 0.06 Z_{\odot}$

 $\log N_{H} = 20.8 \pm 0.1$

 $[S/H] = -1.0 \pm 0.2 = 0.1 Z_{\odot}$

GRB-DLAs

Berger et al. 2006; Prochaska et al. 2007; Savaglio et al. 2007

 $\langle N(HI)_{GRB} \rangle \sim 10 \text{ x } \langle N(HI)_{QSO} \rangle$

GRB-DLAs

Berger et al. 2006; Prochaska et al. 2007; Savaglio et al. 2007

 $\langle N(HI)_{GRB} \rangle \sim 10 \text{ x } \langle N(HI)_{QSO} \rangle$

GRB-DLAs

Penprase, Berger, et al. 2006

Significant depletion but no evidence for dust reddening at a commensurate level

Penprase, Berger, et al. 2006

Prochaska et al. 2007

(Absence of) Molecular Hydrogen

Tumlinson et al. 2007

- Low metallicity (no dust)?
- Destruction by UV radiation from the GRB?
- Destruction by ambient UV radiation field?
- Small numbers?

(Absence of) Molecular Hydrogen

Tumlinson et al. 2007

log (Z / Z _)

- Small numbers?

GRB-DLA Host Galaxies

GRBs offer an alternative galaxy-selection technique

Redshifts & metallicities measured from absorption spectra

What is the connection between DLAs and star formation?

QSO-DLA Counterparts

Colbert & Malkan 2002

HST/NICMOS [H(5σ)=22 mag; 1/22 detected]

Most DLAs are <u>not</u> drawn from the bright end of the LBG population

QSO-DLA Counterparts

Colbert & Malkan 2002

HST/NICMOS [H(5σ)=22 mag; 1/22 detected]

GRBs have <1" offset \Rightarrow no ambiguity about which galaxy is the DLA counterpart

 $GRBs \ fade \ away \Rightarrow$

galaxy can be imaged to L« L* & regardless of PSF

F606W(AB) \approx 28.1 mag $L \sim 0.02 L^*$ SFR $\sim 1 M_{\odot}/yr$

Too faint for other techniques No spectroscopic confirmation

Chary, Berger, & Cowie 2007

z = 4.942 $F_v = 0.23 \pm 0.04 \text{ }\mu\text{Jy}$ $L_V \approx 1.3 \times 10^{10} \text{ }L_{\odot} \sim 0.15 \text{ }L^*$ $[\text{S/H}] = -0.85 \pm 0.20 = 0.15 \text{ }Z_{\odot}$

Chary, Berger, & Cowie 2007

z = 4.942 $F_v = 0.23 \pm 0.04 \text{ }\mu\text{Jy}$ $L_V \approx 1.3 \times 10^{10} \text{ }L_{\odot} \sim 0.15 \text{ }L^*$ $[\text{S/H}] = -0.85 \pm 0.20 = 0.15 \text{ }Z_{\odot}$

Chary, Berger, & Cowie 2007

The Mass-Metallicity Relation at z > 3

Chary, Berger, & Cowie 2007

 $z \sim 0$: Tremonti et al. 2004; $z \sim 1$: Kobulnicky & Kewley 2004; Savaglio et al. 2005; $z \sim 2$: erb et al. 2006

Obscured Star Formation

Berger, Cowie, et al. 2003

Berger et al. 2001

z = 1.119 R = 23.5 mag R-K = 2.2 mag $SFR_{opt} = 55 \text{ M}_{\odot}/\text{yr}$

z = 0.966 R = 22.4 mag R-K = 2.8 mag $SFR_{opt} = 10 \text{ M}_{\odot}/\text{yr}$

Obscured Star Formation

Berger, Cowie, et al. 2003

Berger et al. 2001

z = 1.119 R = 23.5 mag R-K = 2.2 mag $SFR_{opt} = 55 \text{ M}_{\odot}/\text{yr}$

 $SFR \sim 100-300 \text{ M}_{\odot}/\text{yr}$ $L_{FIR} \sim (1-3) \times 10^{12} \text{ L}_{\odot}$ z = 0.966R = 22.4 magR-K = 2.8 mag $SFR_{opt} = 10 \text{ M}_{\odot}/\text{yr}$

Obscured Star Formation

Berger, Cowie, et al. 2003

- $-\sim 10\%$ detection rate in radio/submm
- $\textit{SFR} \sim 100\text{--}300~M_{\odot}/yr$
- Detected hosts are LIRGs/ULIRGs
 <u>but</u> very blue

Cosmic Re-ionization

Gnedin et al.

 \leftarrow

Fan et al. 2006

Ran X, et al. 2006. Annu. Rev. Astron. Astrophys. 44:415–62

GRBs and Cosmic Re-ionization

z = 6.295log $N_H \sim 21.3$ $Z \sim 0.05 Z_{\odot}$

Kawai et al. 2005

GRBs and Cosmic Re-ionization

z = 6.295log $N_H \sim 21.3$ $Z \sim 0.05 Z_{\odot}$

Kawai et al. 2005

GRBs and Cosmic Re-ionization

- Long GRBs are the end product of some massive stars
- GRBs have been detected to $z \sim 6.3$
- Afterglow spectroscopy reveals DLAs in ~90% of the cases
- The HI columns and metallicities are on average higher than in QSO-DLAs
- Evidence for depletion in the warm ISM of the hosts but with no commensurate extinction
- The availability of precise positions and the declining flux allow deep searches for DLA countparts
- Initial observations with *Spitzer* reveal counterpart with $\sim 0.1 L^*$
- Some GRB hosts have highly obscured star formation