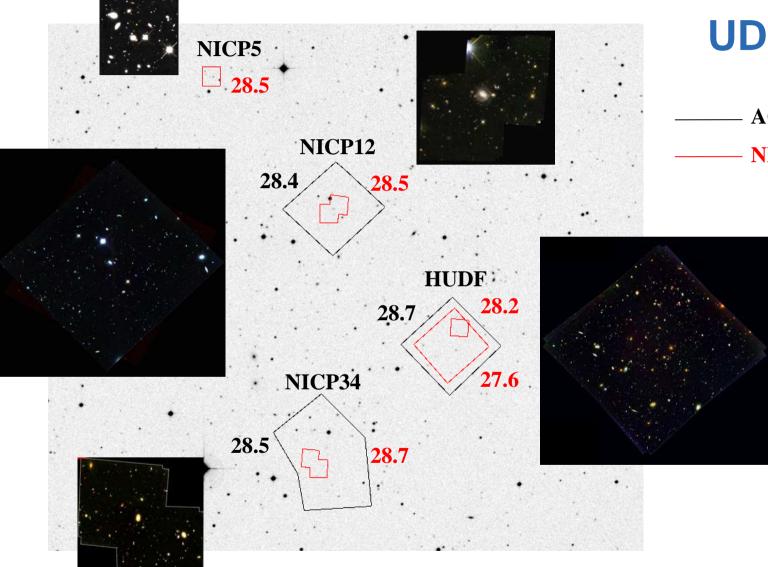


Constraints on Reionization from z-dropouts

Pascal Oesch

(largely based on Oesch et al. 2008, arXiv: 0804.4874)

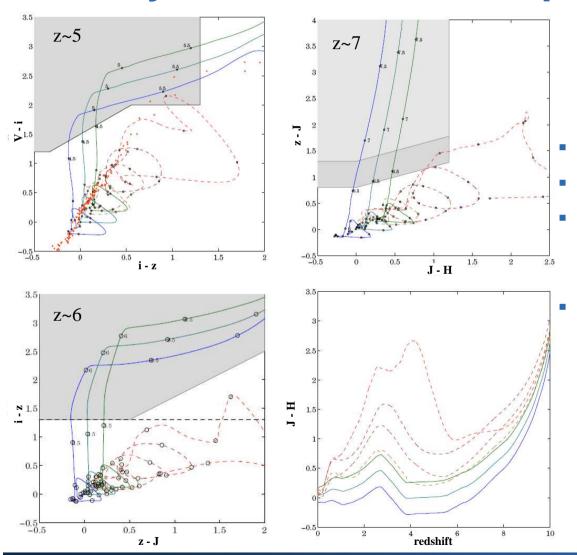
In collaboration with the UDF05 team:


S.V.W. Beckwith, L.E. Bergeron, **C.M. Carollo**, T. Dahlen, H.C. Ferguson, J.P. Gardner, A.M. Koekemoer, S.J. Lilly, R.A. Lucas, B. Mobasher, N. Panagia, C.M. Pavlovsky, **M. Stiavelli**, M. Trenti

What reionizes the Universe?

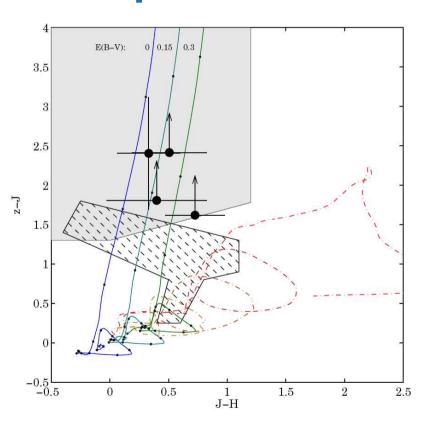
- Possible sources
 - **QSOs**
 - LF found to decrease significantly out to z>6
 - too shallow faint end slope
 - **Exotic sources**
 - Xray photons from Mini-BHs
 - Decaying sterile neutrinos
 - Star-forming galaxies
 - LBGs / LAEs detected out to z~7 (some candidates out to z~10)
 - space density and its evolution just after reionization (z<6) guite well constrained
- This talk
 - UDF05 data: **LBG** LF to z~7
 - estimate their possible contribution to reionization

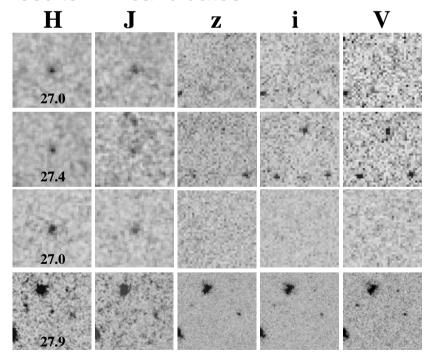
Eidgenössische Technische Hochschule Zürlch Swiss Federal Institute of Technology Zurich


WHITE STREET

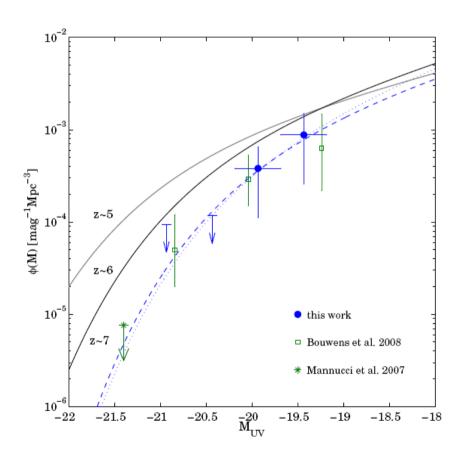
——— ACS (B), V, i, z

— NICMOS J, H


The Lyman Break Technique in the UDF05

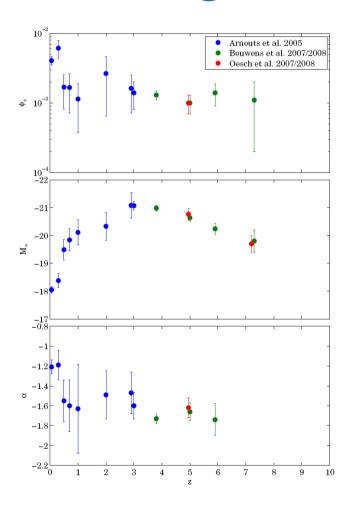

- 5 band photometry: V, i, z, J, H
- Selection of galaxies from z = 5 10
- Interlopers:
 - Faint stars
 - Passive galaxies around z~1-2
- GOODS FORS2 spectroscopy contamination < 10% for V- and i-dropouts (Vanzella et al. 2006)

The z~7 Universe: z-dropouts in the UDF05+HUDF



- Search 7.9 arcmin² NICMOS imaging
- H-selected catalogs
- results in 4 candidates

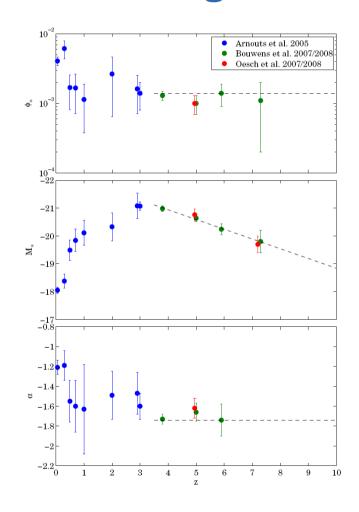
Evolution of the LBG LF to z~7



- Use candidates to construct LF at z~7
- No bright (H<26.5) galaxies found (4 expected)
- z~6 LF would over predict the number of galaxies by factor of 3
- $M_* = -19.7 \pm 0.3$

UV LF: Schechter Function Modeling

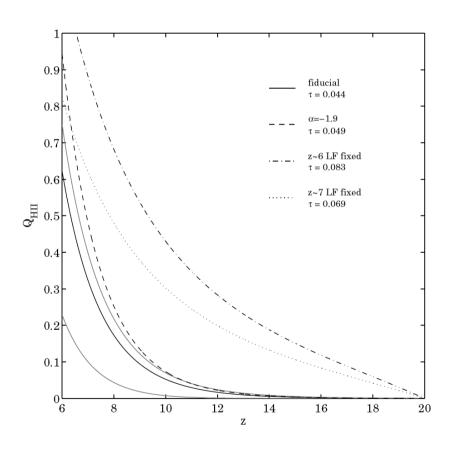
- Evolution of the UV LF is found to be remarkably smooth at z>1
- Fixing phi* and alpha is well motivated
- Dimming in M* found to continue steadily (z~3-7)



UV LF: Schechter Function Modeling

- Evolution of the UV LF is found to be remarkably smooth at z>1
- Fixing phi* and alpha is well motivated
- Dimming in M* found to continue steadily (z~3-7)

→ Extrapolate to z>7



The Contribution of LBGs to Reionization

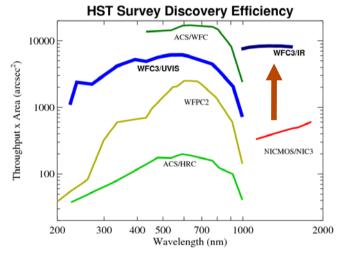
- Diagnostic: volume filling factor of ionized hydrogen Q_{HII}
 - require percolation (Q_{HII}=1) for end of reionization (z~6)
 - calculation of Q_{HII} (following Bolton & Haehnelt 2007)
 - balance between ionizing photons emitted and recombinations
 - biggest uncertainties
 - clumping factor, C = 2
 - escape fraction of ionizing photons relative to NUV continuum radiation, f_{esc} = 20%
- Constraint: optical depth of CMB photons to electron scattering
 - measured by WMAP: $\tau = 0.087 \pm 0.017$ (Dunkley et al. 2008)
 - for instantaneous reionization scenario this implies: z(reion) = 11.0 ± 1.4

Results: Evolution of the HII filling factor

 faint galaxies provide the bulk of the ionizing photons required for reionization

- too few atoms ionized at high redshift (in fiducial model)
- population with non-evolving z~7 LF does not ionize the universe by z~6

So what is really going on?


- Evolution of LF slowing down or inverted?
 - Higher SFR density predicted before reionization due to SF in minihalos
 - Jeans mass increased in ionized IGM (e.g. Barkana & Loeb 2000)
 - massive, post-SB galaxies at z~6
 - ~40% of bright i-dropouts show strong Balmer breaks: old stellar populations (e.g. Eyles et al. 2007)
 - Bulk of these stars must have formed at z>7
- Are LBGs more efficient ionizers at higher redshifts?
 - low metallicities
 - top heavy IMF
- Undetected sources?
 - Pre-ionization from first stars, mini-QSOs, ...
 - points towards an extended EoR

Our WFC3 program

Current limitations

- Resolution & sensitivity of ground based NIR
- FoV & sensitivity of space-based NIR

Ultra-deep WFC3 survey around the HUDF

(PI: Illingworth, Cols: Bouwens, Carollo, Franx, Labbe, Magee, PO, Stiavelli, Trenti, vanDokkum)

- Firm constraints on SEDs of LBGs
- Consolidate z ~ 4 7 LF
- New LF at z ~ 8 → 10
 - Evolution of SFRD from $z \sim 4 \rightarrow 10$
 - Further constraints on reionization from LBGs

The END