

The IGM and reionization

Contents:

- Constraints on HI/H at high z
- Topology of reionization
- Impact of reionization on galaxies

Recent reviews:

- •Observational Constraints on Cosmic Reionization (Fan, Carilli & Keating 2006 ARAA)
- •The Reionization of the Universe by the First Stars and Quasars (Loeb & Barkana, 2001 ARAA)
- •The First Cosmic Structures and Their Effects (Ciardi & Ferrara, 2005 SSR)

Institute for Computational Cosmology

Tom Theuns

Institute for Computational Cosmology Ogden Centre for Fundamental Physics Durham University, UK and University of Antwerp Belgium

Basics: neutral hydrogen along the sightline to a distant source (QSO, GRB) scatters light due to Lyman-alpha transition, decreasing the amount of observed flux To earth Intervening gas $\frac{F_{\text{observed}}}{F_{\text{emitted}}} = \exp(-\tau)$ H emission from quasar 'Metal' absorption lines 4000 3500 5000 5500 6000 Wavelength (Angstroms) $\tau = 2.5 \left(\frac{\Omega_m}{0.3}\right)^{-1/2} \left(\frac{h}{0.72}\right)^{-1} \left(\frac{T}{10^4 \text{K}}\right)^{-0.7}$ $\times \left(\frac{\Gamma}{10^{-12}\,\mathrm{s}^{-1}}\right)^{-1} \left(\frac{\Omega_b \,h^2}{0.02}\right)^2 \left(\frac{1+z}{6}\right)^{4.5}$

Optical depth of uniform IGM; Gunn & Peterson 1965

Institute for Computational Cosmology

3

Totani et al: GRB spectrum

$$= 2.5 \left(\frac{\Omega_m}{0.3}\right)^{-1/2} \left(\frac{h}{0.72}\right)^{-1} \left(\frac{T}{10^4 \text{K}}\right)^{-0.7}$$
$$\times \left(\frac{\Gamma}{10^{-12} \text{ s}^{-1}}\right)^{-1} \left(\frac{\Omega_b h^2}{0.02}\right)^2 \left(\frac{1+z}{6}\right)^{4.5}$$

How neutral is the gas?

lliev et al

4

Tom Theuns

Institute for Computational Cosmology

ICC

Neutral gas and the Lyman-alpha damping wing

Totani et al: damping wing is due to DLA, not neutral IGM. Why not the case for QSOs?

Institute for Computational Cosmology 5

Statistics of ionized regions

6

Wyithe & Loeb 04

Institute for Computational Cosmology

QSO near zones

Lidz et al 07

QSO near zones

Bolton & Haehnelt 08

Institute for Computational Cosmology 8

QSO near zones

Institute for Computational Cosmology 9

Topology and source properties

Figure 3. Comparison of four radiative transfer simulations post-processed on the same density field, but using different source prescriptions parametrized by $\dot{N}(m) = \alpha(m)m$. The white regions are ionized and the black are neutral. The left-hand panel, left centre panel, right centre panel and right-hand panels are, respectively, cuts through Simulations S2 ($\alpha \propto m^{-2/3}$), S1 ($\alpha \propto m^0$), S3 ($\alpha \propto m^{2/3}$) and S4 ($\alpha \propto m^0$, but only haloes with $m > 4 \times 10^{10} M_{\odot}$ host sources). For the top panels, the volume-ionized fraction is $\bar{x}_{i,V} \approx 0.2$ (the mass-ionized fraction is $\bar{x}_{i,M} \approx 0.3$) and z = 8.7. For the middle panels, $\bar{x}_{i,V} \approx 0.5(x_{i,M} \approx 0.6)$ and z = 7.7, and for the bottom panels, $\bar{x}_{i,V} \approx 0.7(\bar{x}_{i,M} \approx 0.8)$ and z = 7.3. Note that the S4 simulation outputs have the same $\bar{x}_{i,M}$, but $\bar{x}_{i,V}$ that are typically 0.1 smaller than that of other runs. In S4, the source fluctuations are nearly Poissonian, resulting in the bubbles being uncorrelated with the density field ($\bar{x}_{i,V} \approx \bar{x}_{i,M}$). Each panel is 94 Mpc wide and would subtend 0.6 degrees on the sky.

Quinn et al 08

Institute for Computational Cosmology 10

QSO sites are likely biased

Ionized fractions:

Gallerani et al 08

Institute for Computational Cosmology 12

Bolton & Haehnelt 06

Institute for Computational Cosmology 13

Change in IGM properties

Ol forest

 $\begin{array}{l} \mathbf{O} + \mathbf{H}^+ \rightarrow \mathbf{O}^+ + \mathbf{H}^0 \\ \mathbf{O}^+ + \mathbf{H}^0 \rightarrow \mathbf{O} + \mathbf{H}^+ \end{array} \end{array}$

The equilibration time-scale is

$$\sim \frac{1}{k_{\rm ce}n_{\rm HI}} \sim 1.7 \times 10^5 x_{\rm HI} \Delta \left(\frac{1+z}{7}\right)^3 \,\mathrm{yr}$$

Oh 2002

Becker et al 06

FIG. 4.—Absorption lines for the $z_{sys} = 6.1293$ O I system toward SDSS 1148+5251. See Fig. 1 for details. The features around Si II $\lambda 1260$ are Ly α absorption in the quasar proximity region. The C II components at $\Delta v = -67$, -29, and 26 km s⁻¹ are unconfirmed.

Institute for Computational Cosmology

15

Thermal evolution

Faucher-Gigere et al 07, Bernardi et al 03

Thermal evolution

Theuns et al 02 Schaye et al 00

Institute for Computational Cosmology 17

Thermal evolution

Dwarf galaxy with GIMIC/OWLS code

log (Gas density) in [Msun/h / (Mpc/h) ^ 3]

Simulating the forest

Leiden: Claudio Dalla Vecchia Joop Schaye

Trieste: Luca Tornatore

MPA: **Volker Springel**

Aims: •simulate IGM and galaxies together •investigate numerical/physical uncertainties

- •Star formation guarantees Schmidt law
- Stellar evolution

•Winds

Metal-dependent cooling

Institute for Computational Cosmology 20

Suite of simulations: GIMIC/OWLS

Galaxy-Intergalactic Medium Interaction Calculation

Zoomed simulations of 5 spheres picked from the Millennium Simulation

Combine LSS with high numerical resolution

Tom Theuns

Institute for Computational Cosmology

reionization and galaxies

If reionization due to low-mass galaxies, radiative feedback might lead to extended EoR.

Institute for Computational Cosmology 24

Okamoto et al 08

Institute for Computational Cosmology 25

reionization and galaxies

1 + z

Model limits accretion of hot gas onto small haloes, and photo-evaporation Institute for Computational Cosmology 26

Okamoto et al 08

reionization and galaxies

Characteristic mass is much smaller than filtering mass

Okamoto et al 08

Institute for Computational Cosmology 27

reionization and sources

Does early reionization constrain small-scale powerspectrum? Institute for Computational Cosmology 28

Sugiyama et al 05

Structure formation is suppressed below warm dark matter free streaming scale. How does that affect first stars?

M_{dm} = 3 keV, M_{fs} ~ 3 x 10⁸ solar masses

Institute for Computational Cosmology 29

First stars in WDM form in filaments

Institute for Computational Cosmology 30

Gao & Theuns Science 2007

Massive stars

Low-mass stars

Seed for super-massive BH

Conclusions

z reion > 6, but fluctuation in ionised fraction large are we observing end-of-pre-overlap at z=6? gap statistics, and QSO near-sizes confusing was to be expected? why do we not see the OI forest? enrichment and metals go together? what can topology tell us about sources? need more modelling